Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the bone ingrowth extent for tibial tray designs reporting near 30% extent of bone ingrowth (1,2). While these analyses were performed on implants that demonstrated unacceptably high rates of clinical failure, a paucity of data exists on the extent on bone ingrowth in contemporary implant designs with newer methods for manufacturing the porous surfaces. We sought to evaluate the extent of attached bone on retrieved cementless tibial trays to determine if patient demographics, device factors, or radiographic results correlate to the extent of bone ingrowth in these contemporary designs. Using our IRB approved retrieval database, 17 porous tibial trays were identified and separated into groups based on manufactIntroduction
Methods