The longevity of highly cross-linked polyethylene (XLPE) bearings is primarily determined by its resistance to long-term oxidative degradation. Addition of vitamin E to XLPE is designed to extend Two sets of four types of ceramic femoral heads, consisting of three oxides (Al2O3 BIOLOX®Introduction
Materials and Methods
In total hip arthroplasty (THA), polyethylene (PE) liner oxidation leads to material degradation and increased wear, with many strategies targeting its delay or prevention. However, the effect of femoral head material composition on PE degradation for ceramic-PE articulation is yet unknown. Therefore, using two different ceramic materials, we compared PE surface alterations occurring during a series of standard ceramic-PE articulation tests. Ceramic-PE THA bearings were tested in a simulator, using ASTM F2003-02, ASTM F1714-96 (2013) and ISO 14242:1–3 standards. Acetabular liners (Apex-Link PolyTM, OMNI Life Science, East Taunton, MA, USA) were articulated against Ø28 mm Si3N4 femoral heads (Amedica Corp., Salt Lake City, UT, USA). For comparison, ArCom® PE liners (Biomet Inc. Warsaw, IN, USA) were also tested against Ø28 mm zirconia-toughened alumina (ZTA) femoral heads (BIOLOX®Introduction
Materials and Method