Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 18 - 18
1 Nov 2018
Martín-Saavedra FM Sánchez-Casanova S Escudero-Duch C Falguera M Prieto M Arruebo M Santamaría J Vilaboa N
Full Access

There is a growing interest in the development of tissue engineering (TE) therapies to repair damaged bone. Among the scaffolds for TE applications, injectable hydrogels have demonstrated great potential as three-dimensional cell cultures in bone TE, owing to their high water content, porous structure that allows cell transplantation and proliferation, similarity to the natural extracellular matrix and ability to match irregular defects. We investigated whether fibrin-based hydrogels capable of transducing near infrared (NIR) energy into heat can be employed to lead bone repair. Hollow gold nanoparticles with a plasmon surface band absorption at ∼750 nm, a NIR wavelength within the so called “tissue optical window”, were used as fillers in injectable fibrin-based hydrogels. These composites were loaded with genetically-modified cells harbouring a heat-activated and rapamycin-dependent gene circuit to regulate transgenic expression of the reporter gene firefly luciferase (fLuc). NIR-responsive cell constructs were injected to fill a 4 mm diameter critical-sized defect (CSD) in the parietal bone of mouse calvaria. NIR-irradiation in the presence of rapamycin triggered a pattern of fLuc activity that faithfully matched the illuminated area of the implanted hydrogel. Having shown that this platform can control the expression of a transgene product, we tested its effectiveness on regulating the secretion of transgenic bone morphogenetic protein 2 (BMP-2) from NIR-responsive hydrogels implanted in CSD. The spatiotemporal pattern of transgenic BMP-2 secretion induced by NIR-irradiation in the presence of rapamycin significantly stimulated bone regeneration from the edge of osteotomy in the CSD practiced, validating the therapeutic approach.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 93 - 93
1 Nov 2018
Martín-Saavedra FM Escudero-Duch C Prieto M Sánchez-Casanova S López D Arruebo M Voellmy R Santamaría J Vilaboa N
Full Access

As near-infrared (NIR) photothermal agents, copper sulfide nanoparticles (CuSNP) offer several advantages over plasmonic gold nanoparticles (GNP), the most widely used photothermal nanotransducers in biomedical applications. CuSNP exhibit strong optical absorption at NIR wavelengths (650–1100 nm) and convert it into heat due excitation of electronic transitions or plasmonic photoexcitation. In contrast with GNP, CuSNP are degradable, readily prepared, inexpensive to produce, efficiently cleared from the body and their photothermal efficiency is less sensitive to the dielectric constant of the surrounding medium. We explored the feasibility of CuSNP to function as degradable NIR nanotransducers within fibrin-based cellular scaffolds, paying great attention to the stability and photothermal efficiency of the composite. We tested in vitro and in vivo whether NIR-responsive fibrin hydrogels comprising CuSNP (CuSNP hydrogels) are reliable platforms for triggering transgene expression in cells harboring a gene circuit activatable by heat and dependent of rapamycin. NIR laser irradiation of the CuSNP hydrogels increased local temperature and, in the presence of rapamycin, triggers the gene switch based on the promoter of the highly heat-inducible HSP70B gene (HSPA7). After implantation of such a cell-containing CuSNP hydrogel, transgenic expression can be remotely triggered by NIR-irradiation. Interestingly, we found that CuSNP hydrogels induce remodeling activity in stem cells and stimulate an angiogenic response. In short, CuSNP hydrogels offer compelling features for tissue engineering applications, as fully degradable implants with enhanced integration capacity in host tissues that can provide for remote control in the deployment of therapeutic gene products.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 44 - 44
1 Dec 2017
Hampp E Scholl L Prieto M Chang T Abbasi A Bhowmik-Stoker M Otto J Jacofsky D Mont M
Full Access

While total knee arthroplasty has demonstrated clinical success, final bone cut and final component alignment can be critical for achieving a desired overall limb alignment. This cadaver study investigated whether robotic-arm assisted total knee arthroplasty (RATKA) allows for accurate bone cuts and component position to plan compared to manual technique. Six cadaveric specimens (12 knees) were prepared by an experienced user of manual total knee arthroplasty (MTKA), who was inexperienced in RATKA. For each cadaveric pair, a RATKA was prepared on the right leg and a MTKA was prepared on the left leg. Final bone cuts and final component position to plan were measured relative to fiducials, and mean and standard deviations were compared.

Measurements of final bone cut error for each cut show that RATKA had greater accuracy and precision to plan for femoral anterior internal/external (0.8±0.5° vs. 2.7±1.9°) and flexion/extension* (0.5±0.4° vs. 4.3±2.3°), anterior chamfer varus/valgus* (0.5±0.1° vs. 4.1±2.2°) and flexion/extension (0.3±0.2° vs. 1.9±1.0°), distal varus/valgus (0.5±0.3° vs. 2.5±1.6°) and flexion/extension (0.8±0.5° vs. 1.1±1.1°), posterior chamfer varus/valgus* (1.3±0.4° vs. 2.8±2.0°) and flexion/extension (0.8±0.5° vs. 1.4±1.6°), posterior internal/external* (1.1±0.6° vs. 2.8±1.6°) and flexion/extension (0.7±0.6° vs. 3.7±4.0°), and tibial varus/valgus* (0.6±0.3° vs. 1.3±0.7°) rotations, compared to MTKA, respectively, (where * indicates a significant difference between the two operative methods based on 2- Variances testing, with α at 0.05). Measurements of final component position error show that RATKA had greater accuracy and precision to plan for femoral varus/valgus* (0.6±0.3° vs. 3.0±1.4°), flexion/extension* (0.6±0.5° vs. 3.0±2.1°), internal/external (0.8±0.5° vs. 2.6±1.6°), and tibial varus/valgus (0.7±0.4° vs. 1.1±0.8°) than the MTKA control, respectively.

In general, RATKA demonstrated greater accuracy and precision of bone cuts and component placement to plan, compared to MTKA in this cadaveric study. For further confirmation, RATKA accuracy of component placement should be investigated in a clinical setting.