header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 316 - 316
1 Sep 2012
Pandorf T Preuss R Flohr M Upmann C
Full Access

Introduction

In knee arthroplasty a ceramic component has several advantages: first, there is no ion release implying a risk for potential allergies. Second, the hardness of the material leads to a scratch resistance which ultimately reduces PE wear over time. In the past, ceramic components in knee applications were limited in the variety of design possibilities due to necessary thickness of the component resulting from the associated fracture risk of ceramics.

By the development of an alumina matrix composite material with increased mechanical properties it is possible to develop ceramic knee components which have nearly the same design as a metal component and use the same implantation technique as well as the same instruments. This offers the surgeon the opportunity to choose intraoperatively between metal or ceramic knee components. Extensive in-vitro testing shows that ceramic knee components achieve superior mechanical test results. The reliability of the components is proven by two different burst tests and a fatigue test for both a femoral and a tibial ceramic knee component.

Material and method

The mechanical proof-test was developed by subsequent steps of numerical load/stress analysis and design of an adequate mechanical test equipment. The procedure was organized as follows:

Oncologic: Analysis of relevant maximum in-vivo loading conditions

Analysis of the “boundary conditions”

Finite Element analysis: Identifying regions of highest stress concentration

Design analysis and accommodation if necessary

Development of an adequate mechanical test equipment which produces stresses comparable to the in-vivo conditions

Performing mechanical tests with ceramic femoral components

Validation of the test concept: comparison of test results and stress analysis

Assign “safety margin”,

Establish “proof test”