Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 49 - 49
23 Jun 2023
McCalden R Pomeroy E Naudie D Vasarhelyi E Lanting B MacDonald S Howard J
Full Access

Subsidence remains a concern when utilizing modern tapered fluted titanium (TFT) femoral stems and may lead to leg length discrepancy, impingement, instability and failure to obtain stem osseointegration. This study aims to compare stem subsidence across three modern TFT stems. Our secondary aim was to investigate the influence of bicortical contact or ‘scratch fit’ on subsidence, as well as the role of intraoperative imaging in maximizing this bicortical contact and preventing stem subsidence.

A retrospective review of 271 hip arthroplasties utilizing modern TFT stems in a single institution was performed. Three stem designs were included in the analysis: one monoblock TFT stem (n=91) and two modular TFT stems (Modular A [n=90]; Modular B [n=90]). Patient demographics, Paprosky femoral bone loss classification, bi-cortical contact, utilization of intra-operative imaging and stem subsidence (comparison of initial post-operative radiograph to the latest follow up radiograph - minimum three months) were recorded.

There was no statistically significant difference in the amount of subsidence between the three stems (Monoblock: 2.33mm, Modular A: 3.43mm, Modular B: 3.02mm; p=0.191). There was no statistical difference in subsidence >5mm between stems (Monoblock: 9.9%, Modular A: 22.2%, Modular B: 16.7%). Subgroup analysis based on femoral bone loss grading showed no difference in subsidence between stems. Increased bicortical contact was strongly associated with reduced subsidence (p=0.004). Intra-operative imaging was used in 46.5% (126/271) of cases; this was not correlated with bicortical contact (p=0.673) or subsidence (p=0.521). Across all groups, only two stems were revised for subsidence (0.7%).

All three modern TFT stems were highly successful and associated with low rates of subsidence, regardless of modular or monoblock design. Surgeons should select the stem that they feel is most clinically appropriate.