Automated MRI bone segmentation is one of the most challenging problems in medical imaging. To increase the segmentation robustness, a prior model of the structure could guide the segmentation. Statistical Shape Models (SSMs) are efficient examples for such application. We present an automated SSM construction approach of the The basic idea is to relate only corresponding parts of the shape under investigation. A sample from the samples set is chosen as a common reference (atlas), and the other samples are landmarked and registered to it so that the corresponding points can be identified. The registration has three levels: alignment, rigid and elastic transformations. To align two Afterwards, the samples are locally deformed toward the atlas using directly their landmarks (traditional approach). Unfortunately, landmarks-correspondences could be mismatched at some anatomically complex, “critical,” zones of the scapula. To overcome such a problem, we suggest to 3D-segment these “critical” zones using a 3D Watershed-based method. Watershed is based on a physical concept of immersion, where it is achieved in a similar way to water filling geographic basins. We believe that this is a natural way to segment the surface of the scapula since it has two large “basins”: the Once we have the zones, surface-to-surface correspondence is defined and the landmarks' point-to-point correspondences are obtained within each zone pair separately. The elastic registration is then applied on the whole surface via a multi-resolution B-Spline algorithm. The atlas is built through an iterative procedure to eliminate the bias to the initial choice and the correspondences are identified by a reverse registration. Finally, the statistical model can be constructed by performing Principle Component Analysis (PCA).INTRODUCTION
METHODS