Aseptic loosening remains a long-term problem in total hip replacement. This phenomenon is prevalent even if modern cementing techniques seem to have reduced its incidence. Osteolysis has been deemed as a disease of access to fixation interfaces ( Femoral component heating was first proposed as a method to reduce the curing time of bone cement ( The model femora used for this study were maintained at a constant temperature of 37C while the stem temperature varied between 21, 37 and 44C. The femoral moulds were formed from dental plaster with a similar thermal conductivity to bone. Mould sizes were created to generate cement mantles of 2, 5 and 7.5mm thickness. In the 2mm Simplex P cement mantles there was very little porosity evident. It was concentrated in the proximity of the stem when the component was kept at 21C and disappeared as the stem was heated to higher temperatures. Minimal porosity could be identified in the thicker mantles with no apparent differences between temperatures. There were no temperature trends evident from within this cement group. Palacos R cement has been reported to have a higher porosity than Simplex in a number of studies ( This study analyses the changes in porosity across the mantle of the cement as the temperature of the stem component is increased. The initial results confirm that the porosity at the stem cement mantle is decreased but indicate that the porosity within the body of the cement is increased as the temperature of the stem is increased.