Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 102 - 102
1 Oct 2012
Petrigliano F Suero E Lane C Voos J Citak M Allen A Wickiewicz T Pearle A
Full Access

Injuries to the posterior cruciate ligament (PCL) and the posterolateral corner (PLC) of the knee remain a challenging orthopaedic problem. Studies evaluating PCL and PLC reconstruction have failed to demonstrate a strong correlation between the degree of knee laxity as measured by uniplanar testing and subjective outcome or patient satisfaction. The effect that changing the magnitude of posterior tibial slope has on multiplanar, rotational stability of the PCL-deficient knee has yet to be determined. We aimed to evaluate the effect that changes in posterior tibial slope would have on static and dynamic stability of the PCL-PLC deficient knee.

Ten knees were used for this study. Navigated posterior drawer and standardised reverse mechanised pivot shift maneuvers were performed in the intact knee and after sectioning the PCL, the lateral collateral ligament (LCL), the popliteofibular ligament (PFL) and the popliteus muscle tendon (POP). Navigated high tibial osteotomy (HTO) was performed to obtain the desired change in tibial plateau slope (+5® or −5® from native slope). We then repeated the posterior drawer and the reverse mechanised pivot shift test for each of the two altered slope conditions.

Mean posterior tibial translation during the posterior drawer in the intact knee was 1.4 mm (SD = 0.48 mm). In the PCL-PLC deficient knee, posterior tibial translation increased to 18 mm (SD = 5.7 mm) (P < 0.001). Increasing the amount of posterior tibial slope by 5® reduced posterior tibial translation to 12 mm (SD = 4.7 mm) (P < 0.01). Decreasing the amount of posterior slope by 5® compared to the native knee, increased posterior tibial translation to 21 mm (SD = 6.8 mm) (P < 0.01). There was a significant negative correlation between the magnitude of tibial plateau slope and the magnitude of the reverse pivot shift (R2 = 0.71; P < 0.0001).

Mean posterior tibial translation during the reverse mechanised pivot shift test in the intact knee was 7.8 mm (SD = 2.8 mm). In the PCL-PLC deficient knee, posterior tibial translation increased to 26 mm (SD = 5.6 mm) (P < 0.001). Increasing the amount of posterior tibial slope by 5® reduced posterior tibial translation to 21 mm (SD = 6.7 mm) (P < 0.01). Decreasing the amount of posterior slope by 5® compared to the native knee, increased posterior tibial translation to 34 mm (SD = 8.2 mm) (P < 0.01). There was a significant negative correlation between the magnitude of tibial plateau slope and the magnitude of the reverse pivot shift (R2 = 0.72; P < 0.0001).

Decreasing the magnitude of posterior slope of the tibial plateau resulted in an increase in the magnitude of posterior tibial translation during the posterior drawer and the reverse mechanised pivot shift test in the PCL-PLC deficient knee. Conversely, increasing the slope of the tibial plateau reduced the amount of posterior tibial translation during the posterior drawer and the reverse mechanised pivot shift test. However, the effect of the increase in slope was not sufficient to reduce posterior tibial translation to levels similar to those of the intact knee.