header advert
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 126 - 126
1 Mar 2009
Lüring C Grifka J Wolfsteiner J Perlick L Bäthis H Tingart M
Full Access

Introduction: Restoration of neutral alignment of the leg is an important factor affecting the long-term results of total knee arthroplasty (TKA). Recent developments in computer-assisted surgery have focused on systems for improving TKA. To verify that computer assistance improves the leg alignment and the component orientation, we present a single center study with 1000 patients.

Materials and Methods: In a prospective study two groups of 500 patients each undergoing TKA had operations using either a computer-assisted image free navigation system or a conventional technique. Alignment of the leg and the orientation of components were determined on post-operative long-leg coronal and lateral films.

Results: The mechanical axis of the leg was significantly better in the computer-assisted group (97%, within ±3° varus/valgus) compared with the conventional group (78,5%, within ±3° varus/valgus). The coronal alignment of the femoral component was also more accurate in the computer-assisted group.

Discussion: Computer-assisted TKA gives a better correction of alignment of the leg and orientation of the components compared with the conventional technique. Potential benefits in the long-term outcome and functional improvement require further investigation.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 125 - 126
1 Mar 2009
Lüring C Oczipka F Tamm E Grifka J Tingart M Perlick L
Full Access

Soft tissue management is a critical factor in total knee arthroplasty especially in valgus knees. The stepwise release has been based upon surgeon’s experience until now. Computer assisted surgery gained increasing scientific interest in recent times and allows the intraoperative measurement of leg axis and gap size in extension and flexion.

We therefore aimed to analyse the effect of the sequential lateral soft tissue release and the resulting change in the a.p. limb axis on the one hand and the tibiofemoral gaps on the other hand as well in extension as in flexion in 8 cadaveric knees. Measurements were obtained using a CT-free navigation system.

In extension the highest increase compared to the previous release step was found for the first (iliotibial band, p=0.002), second (popliteus muscle, p=0.0003), third (LCL, 0.007) and the sixth (entire PCL, p=0.001) release step. In 90° flexion all differences of the lateral release steps were statistically significant (p< 0.004). Massive progression of the lateral gap in flexion was found after the second (popliteus muscle, p=0.004) and third (LCL, 0.007) release step.

Computer assisted surgery allows to measure the effect of each release step of the sequential lateral release sequence and helps the surgeon to asses the result better.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 105 - 105
1 Mar 2009
Perlick L Bathis H Luring C Kalteis T Tingart M Kock F Beckmann J
Full Access

Background: During the past decade, there has been a resurgence of interest in hip resurfacing as a mode of treatment for the younger patient with hip disease since major disadvantages of previous resurfacing systems have been overcome. The purpose of the presented study was to clarify if an imageless navigation system will allow precise placement of the femoral component.

Methods: Between September 2004 and May 2006, 50 metal-on-metal surface arthroplasties each were performed either using an imageless navigation system or the conventional technique. The inclination and the axial alignment of the femoral component were determined by two independend examiners and compared to the values presented by the navigation system.

Results: In the preoperative x-rays a mean CCD-Angle of 129.2 degrees (Control group: 127.5°) was measured. The mean femoral shaft angle was 137.5 degrees (Control group 133°) postoperatively with a mean deviation of 2.1 degrees compared to the values shown by the system. In the computer assisted group the mean deviation from the ideal placement in the axial plane was 2.9 degrees compared to 4.8° when using the conventional technique.

Conclusion: The use of a navigation system was associated with only an average time loss of 7 minutes for surface data acquisition und mounting of the reference base. The computer assisted technique appears to be helpful to avoid notching during the femoral bone preparation and improve implant positioning which might improve durability.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 98 - 98
1 Mar 2006
Bathis H Perlick L Luring C Tingart M Grifka J
Full Access

Introduction: Previous reports have described the potentially compromising effect of a high tibial osteotomy (HTO) on the results of a subsequent total knee arthroplasty (TKA). Although the reasons are not clear, some authors reported of problems in soft tissue balancing in TKA following a previous HTO.

Method: In a prospective study 22 patients with an average interval of 5.8 years after closed wedge HTO, were operated for TKA. All surgeries were performed with the BrainLAB CT-free navigation system and measurements of the extension and flexion gap were assessed. The intraoperative data were compared to a control group of 100 consecutive computer assisted TKA without previous HTO.

Results: In the study group a highly significant shift towards a medial opening of the flexion gap between the posterior condylar line and the tibial resection (study group 0.4° +/− 4.7° medial opening vs. control group 3.4° +/− 3.3° lateral opening, p< 0.001) was observed. 45% in the study group showed a medial opening of the flexion gap compared to 11% in the control group.

Conclusion: Surgeons should be aware of difficulties in soft-tissue balance in TKA following HTO, especially for the flexion gap configuration and the axial femoral component orientation. The computer assisted technique is helpful to identify soft tissue imbalance.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 92 - 92
1 Mar 2006
Perlick L Bathis H Luring C Kalteis T Tingart M
Full Access

The accuracy of component implantation is an important factor affecting long term results of unicompartmental knee replacement (UKR), particularly, since overcorrection of the leg axis has been associated with an inferior patients outcome. This problem is aggravated when using a minimally invasive approach with a limited view.

In a prospective study, two groups of 40 UKR each were operated either using a non-image-based navigation system or the conventional technique. Radiographic assessment of postoperative alignment was performed by postoperative long-leg coronal and lateral x-rays.

The results revealed a significant difference between the two groups in favour of navigation with regard to the mechanical axis, as well as the coronal femoral and tibial alignment. In the computer assisted group 38/40 (95%) of UKR were in a range of 4 Degree to 0 degree varus (mechanical axis) compared with 29/40 (72,5%) in the conventional group. There was no significant difference between the groups concerning postoperative range of motion, blood loss and pain score.

The only inconvenience was a lengthening of the operation time (20 min). Due to the limited exposure in minimal invasive unicompartmental TKA the navigation system is helpful in achieving a more precise component orientation. The danger of overcorrection is diminished by real time information about the leg axis at each step during the operation. This improvement could be related to a longer survival rate.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 104 - 104
1 Mar 2006
Luring C Hufner T Kendoff D Perlick L Bathis H Krettek C Grifka J
Full Access

Introduction Correct postoperative leg alignment and stability of total knee prothesis over the full range of movement is one critical factor for successful TKA. This can only be achieved by correct implantation of prothesis and soft tissue handling. Still arthrotomy, surgical approach and handling of patella are discussed controversially.

Materials and Methods In a cadaver specimen study we evaluated the influence of everted or subluxated patella on limb axis during balancing of the knee in three different standard surgical approaches. For each approach we operated five knees. Leg alignment was visualised by Ci CT-free DePuy/BrainLAB navigation system. First, physiological leg alignment was measured. Then the different approaches were performed and a.p. leg axis was first measured and compared as well with everted as with subluxed patella in extension and second in 90 degrees flexion.

Results Eversion of patella leads to an alteration in leg axis compared to subluxed patella of 0.58 degrees (SD: 0.03, range: 0.54–0.6) limb axis in valgus direction in full extension. In 90 degrees flexion we found a mean deviation of leg axis of 0.48 degrees (SD: 0.11, range: 0.38–0.6) with everted patella compared to subluxed patella.

Discussion The surgeon has to be aware of this falsifying influence of everted patella to the a.p. limb axis.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 163 - 167
1 Feb 2006
Kalteis T Handel M Bäthis H Perlick L Tingart M Grifka J

In a prospective randomised clinical study acetabular components were implanted either freehand (n = 30) or using CT-based (n = 30) or imageless navigation (n = 30). The position of the component was determined post-operatively on CT scans of the pelvis.

Following conventional freehand placement of the acetabular component, only 14 of the 30 were within the safe zone as defined by Lewinnek et al (40° inclination sd 10°; 15° anteversion sd 10°). After computer-assisted navigation 25 of 30 acetabular components (CT-based) and 28 of 30 components (imageless) were positioned within this limit (overall p < 0.001). No significant differences were observed between CT-based and imageless navigation (p = 0.23); both showed a significant reduction in variation of the position of the acetabular component compared with conventional freehand arthroplasty (p < 0.001). The duration of the operation was increased by eight minutes with imageless and by 17 minutes with CT-based navigation.

Imageless navigation proved as reliable as that using CT in positioning the acetabular component.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 682 - 687
1 Jul 2004
Bäthis H Perlick L Tingart M Lüring C Zurakowski D Grifka J

Restoration of neutral alignment of the leg is an important factor affecting the long-term results of total knee arthroplasty (TKA). Recent developments in computer-assisted surgery have focused on systems for improving TKA.

In a prospective study two groups of 80 patients undergoing TKA had operations using either a computer-assisted navigation system or a conventional technique. Alignment of the leg and the orientation of components were determined on post-operative long-leg coronal and lateral films.

The mechanical axis of the leg was significantly better in the computer-assisted group (96%, within ±3° varus/valgus) compared with the conventional group (78%, within ±3° varus/valgus). The coronal alignment of the femoral component was also more accurate in the computer-assisted group.

Computer-assisted TKA gives a better correction of alignment of the leg and orientation of the components compared with the conventional technique. Potential benefits in the long-term outcome and functional improvement require further investigation.