Osteochondrosis (OC) is a common joint disease that affects developing cartilage and subchondral bone in humans, and in multiple animal species including horses. It is an idiopathic localized joint disorder characterized by focal chondronecrosis and retention of growing cartilage that can lead to the formation of fissures, subchondral bone cysts or intra-articular fragments. OC is considered a complex multifactorial disease with chondrocyte biogenesis impairment mainly due to biochemical and genetic factors. Likewise, the molecular events involved in the OC are not fully understood. Moreover, the OC pathogenesis seems to be shared across species. In particular, equine OC and human juvenile OC share some symptoms, predilection sites and clinical presentation. In this study, by using the label-free mass spectrometry approach, proteome of chondrocytes isolated from equine OC fragments has been analysed in order to clarify some aspects of cell metabolism impairment occurring in OC. Equine chondrocytes isolated from 7 healthy articular cartilages (CTRL) and from 7 osteochondritic fragments (OC) (both obtained from metacarpo/metatarsophalangeal joints) were analysed. Proteins were extracted using urea and ammonium bicarbonate buffer, reduced, alkylated and digested with Trypsin/Lys-C Mix. Peptides were analysed using Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific). All mass spectra of label-free samples analysed was set up to search against SwissProt human database ( Statistical analysis evidenced 41 proteins up-regulated in OC while 18 were down-regulated with respect to the CTRL. Functional analysis showed that up-regulated proteins in OC were related to extracellular matrix degradation, lysosome, apoptotic execution phase, unfolded protein response, hyaluronan and keratan sulfate degradation, oxidative stress response and negative regulation of BMP signalling pathway. The down-regulated proteins were associated with endochondral ossification, vitamin D in inflammatory disease, Wnt signalling pathway and ECM proteoglycans. Validation assays confirmed these findings These findings may contribute to clarify the events determining the onset and progression of both equine and human OC. Imaging MS analysis of OC and healthy cartilage to analyse lipid and metabolomic changes occurring in OC cartilage is in progress