Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 76 - 76
1 Apr 2017
Goriainov V Pedersen R Gadegaard N Dunlop D Oreffo R
Full Access

Background

Following endosteal uncemented orthopaedic device implantation, the initial implant/bone interface retains spaces and deficiencies further exacerbated by pressure necrosis and resultant bone resorption. This implant-bone space requires native bone infill through the process of de novo osteogenesis. New appositional bone formation on the implant surface is known as contact osteogenesis and is generated by osteogenic cells, including skeletal stem cells (SSCs), colonising the implant surface and depositing the extracellular bone matrix. Surface nanotopographies provide physical cues capable of triggering SSC differentiation into osteoblasts, thus inducing contact osteogenesis, translated clinically into enhanced osseointegration and attainment of secondary stability. The current study has investigated the in vitro and in vivo effects of unique nanotopographical pillar substrates on SSC phenotype and function.

Methods

Adult human SSCs were immunoselected, enriched using STRO-1 antibody and cultured on control and test surfaces for 21 days in vitro. The test groups comprised Ti-coated substrates with planar or modified surfaces with nanopillar. Osteoinductive potential was analysed using qPCR and immunostaining to examine gene expression and protein synthesis.