Due to increasing interest into taper corrosion observed primarily in hip arthroplasty devices with modular tapers, efforts towards characterizing the corrosion byproducts are prevalent in the literature [1–4]. As a result of this motivation, several studies postulate cellular induced corrosion due to the presence of remarkable features in the regions near taper junction regions and articulating surfaces [3–5]. Observations made on explanted devices from a retrieval database as well as laboratory tests have led to the alternative proposal of electrocautery-electrosurgery damage as the cause of these features. These surgical instruments are commonly used for hemostasis or different degrees of tissue dissection. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to evaluate the features observed on retrieved devices. Retrieved devices consisted of OXINIUM and cobalt-chromium-molybdenum (CoCrMo) femoral implants, a Titanium-alloy hip stem, and a CoCrMo metal-on-metal femoral head. Electrocautery-electrosurgery damage was created using a SurgiStat II (Valleylab, Colorado) onto various components (CoCrMo, OXINIUM femoral heads as well as Ti-6Al-4V and CoCrMo alloy test stem constructs). Test components were evaluated using the same methods as the retrieved devices.INTRODUCTION
METHODS
Large diameter femoral heads offer increased range of motion and reduced risk of dislocation. However, their use in total hip arthroplasty has historically been limited by their correlation with increased polyethylene wear. The improved wear resistance of highly crosslinked UHWMPE has led a number of clinicians to transition from implanting traditionally popular sizes (28mm and 32 mm) to implanting 36 mm heads. Desire to further increase stability and range of motion has spurred interest in even larger sizes (> 36 mm). While the long-term clinical ramifications are unknown, in-vivo measurements of highly crosslinked UHMWPE liners indicate increases in head diameter are associated with increased volumetric wear [1]. The goal of this study was to determine if this increase in wear could be negated by using femoral heads with a ceramic surface, such as oxidized Zr-2.5Nb (OxZr), rather than CoCrMo (CoCr). Specifically, wear of 10 Mrad crosslinked UHMWPE (XLPE) against 36 mm CoCr and 44 mm OxZr heads was compared. Ram-extruded GUR 1050 UHMWPE was crosslinked by gamma irradiation to 10 Mrad, remelted, and machined into acetabular liners. Liners were sterilized using vaporized hydrogen peroxide and tested against either 36 mm CoCr or 44 mm OxZr (OXINIUM(tm)) heads (n=3). All implants were manufactured by Smith & Nephew (Memphis, TN). Testing was conducted on a hip simulator (AMTI, Watertown, MA) as previously described [2]. The 4000N peak load (4 time body weight for a 102 kg/225 lb patient) and 1.15 Hz frequency used are based upon data obtained from an instrumented implant during fast walking/jogging and have previously been shown to generate measurable XLPE wear [2,3]. Lubricant was a serum (Alpha Calf Fraction, HyClone Laboratories, Logan, UT) solution that was replaced once per week [2]. Liners were weighed at least once every million cycles (Mcycle) over the duration of testing (∼ 5 Mcycle). Loaded soak controls were used to correct for fluid absorption. Single factor ANOVA was used to compare groups (a = 0.05).Introduction
Materials and Methods