Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 69 - 69
1 Nov 2018
Zhu M Thambyah A Tuari D Callon K Tay M Patel D Coleman B Cornish J Musson D
Full Access

Surgical repair of rotator cuff tears have high failure rates (20–70%), often due to a lack of biological healing. Augmenting repairs with extracellular matrix-based scaffolds is a common option for surgeons, although to date, no commercially available product has proven to be effective. In this study, a novel collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. The collagen scaffold was assessed in vitro for cytocompatability and retention of tenocyte phenotype using alamarBLUE assays, confocal imaging and real-time PCR. Immunogenicity was assessed in vitro by the activation of pre-macrophage cells. In vivo, using a modified rat rotator cuff defect model, supraspinatus tendon repairs were carried out in 46 animals. Overlay augmentation with the collagen scaffold was compared to unaugmented repairs. At 6- and 12-weeks post-op the repairs were tested biomechanically to evaluate repair strength, and histologically for quality of healing. The collagen scaffold supported human tenocyte growth in vitro, with cells appearing morphologically tenocytic and expressing higher tendon gene markers compared to plastic controls. No immunogenic responses were provoked compared to suture material control. In vivo, augmentation with the scaffold improved the histological scores at 12 weeks (8.37/15 vs. 6.43/15, p=0.0317). However, no significant difference was detected on mechanical testing. While the collagen scaffold improved the quality of healing of the tendon, a meaningful increase in biomechanical strength was not achieved. This is likely due to its inability to affect the bone-tendon junction. Future materials/orthobiologics must target both the repaired tendon and the regenerating bone-tendon junction.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 9 - 9
1 Oct 2015
Patel D Sharma S Bryant S Screen H
Full Access

Introduction

The hierarchical structure of tendon results in a complex mechanical strain environment, with tenocytes experiencing both tension and shear during loading. The mechanotransduction mechanisms involved in sensing these environments is currently unclear. To better understand the effects of shear and tension on cell behaviour, a fibre composite system able to recapitulate the physiological shear-tension ratio found in tendons, was used. Cell attachment within the composite was achieved by using either a collagen type I mimetic peptide, DGEA, or a fibronectin associated peptide, YRGDS, and the gene expression response analysed after loading.

Materials and Methods

Fibre composites with 4 different shear-tension (S-T) ratios were made using both PEG-DGEA and PEG-YRGDS fibres. 4 composites were made for each S-T ratio, of which 2 were loaded and 2 used as non-strained controls. Bovine digital extensor tendon tenocytes were seeded within composites, with 3 biological repeats from different donors. Loaded samples were exposed to 5% cyclic strain (1Hz) for 24 hours maintained in an incubator. The gene expression of 14 matrix related genes were analysed after loading via RT-qPCR.