Surgical repair of rotator cuff tears have high failure rates (20–70%), often due to a lack of biological healing. Augmenting repairs with extracellular matrix-based scaffolds is a common option for surgeons, although to date, no commercially available product has proven to be effective. In this study, a novel collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. The collagen scaffold was assessed
The hierarchical structure of tendon results in a complex mechanical strain environment, with tenocytes experiencing both tension and shear during loading. The mechanotransduction mechanisms involved in sensing these environments is currently unclear. To better understand the effects of shear and tension on cell behaviour, a fibre composite system able to recapitulate the physiological shear-tension ratio found in tendons, was used. Cell attachment within the composite was achieved by using either a collagen type I mimetic peptide, DGEA, or a fibronectin associated peptide, YRGDS, and the gene expression response analysed after loading. Fibre composites with 4 different shear-tension (S-T) ratios were made using both PEG-DGEA and PEG-YRGDS fibres. 4 composites were made for each S-T ratio, of which 2 were loaded and 2 used as non-strained controls. Bovine digital extensor tendon tenocytes were seeded within composites, with 3 biological repeats from different donors. Loaded samples were exposed to 5% cyclic strain (1Hz) for 24 hours maintained in an incubator. The gene expression of 14 matrix related genes were analysed after loading via RT-qPCR.Introduction
Materials and Methods