Current artificial discs include 1 or 2 bearing surfaces, providing 3 or 5 degrees of freedom. The ESP® is a one-piece e implant made of silicon and polycarbonate -urethane securely fixed to titanium endplates. It allows limited rotation and translation with elastic return. This cushion without fixed rotation center achieves 6 degrees of freedom including shock absorption. This objective of this study was to evaluate the safety and efficacy of the concept in a prospective nonrandomized trial. Prior to clinical implantations, the device was endurance tested at least 40 millions cycles. The polymer core weight and properties, the geometrical characteristics and cohesion of the implants remained stable. A prospective trial was initiated in 2004 for L3L4, L4L5 and L5S1 levels. Total disc replacements have been performed in 153 lumbar levels through extra-peritoneal mini-invasive anterior approach with a minimum 2 years follow-up.Introduction
Material and methods
Current total disc prostheses are 2- or 3-pieces devices, including 1 or 2 bearing surfaces, and providing 3 or 5 degrees of freedom but with no, or very little, resistance. The ESP® is a one-piece deformable implant made of silicon and polycarbonate polyurethane elastomer securely fixed to titanium endplates. It allows limited rotation and translation with elastic return. This cushion without fixed rotation center achieves 6 degrees of freedom including shock absorption. An earlier attempt to use elastomers (Acroflex®) failed clinically due to the polymer. This highlights the need for accurate in-vitro fatigue testing and clinical evaluations. In-vitro fatigue testing with more than 40 millions cycles were performed on different samples for compression, flexion-extension bending, lateral bending, torsion and shear. A prospective trial was initiated in 2004 for L3L4, L4L5 and L5S1 levels. Total disc replacements have been performed in 153 lumbar levels through extra-peritoneal mini-invasive anterior approach. After in-vitro testing, microscopic examination showed that the polymer core remained unchanged without evidence of cracking or other degradation. Gravimetric analysis revealed insignificant changes in weight. The geometrical characteristics and the cohesion of the implants remained stable. After 3 years clinical experience, there was no device related complication, except one early revision for a post-traumatic implant migration. VAS and ODI scores improvements were equivalent to other published series. In-vitro fatigue testing and short term results of the innovative ESP® prosthesis demonstrate the reliability of the concept. The results are equivalent to other series with conventional implants.
An extra articular correction may be necessary in osteoarthritis with an important post traumatic or congenital deformity. In the last 5 years we performed 11 TKR associated with a tibial (9 cases) or a femoral Osteotomy (2 cases), in one time surgery. The average intra osseous deformity was 14°. The technical problems are different in varus and valgus knees. 1- Which type of osteotomy ? In varus knees with a tibial deformity (6 cases) we use a hight tibial valgus osteotomy with opening wedge. Pre operative planning with long standing X rays allows precise determination of the amount of correction needed. A rigide wire, driven up to the fibular head, is placed. A provisional wedge of the desired size (degree of correction) is maintened temporarily by a staple, which will be removed later. Once the correction has been performed and maintened, the standard instrumentation to implant the prosthesis is used. In valgus knees with a tibial deformity (2 cases) a hight tibial closing wedge osteotomy, and in valgus knees with a femoral deformity (2 cases), a low femoral closing wedge osteotomy, are used. In all cases a medial approach without any release and without fibular osteotomy is performed. 2- Which kind of prosthesis? Two degrees of constraint are possible in fonction of particular needs. Most of the time, a non-constrained PS articular implants will be used and when more constraint will be needed (in lateral instability), CCK-type articular surfaces will be choised. In all cases, a stem will have to be, associated with the osteotomy (tibial or femoral). Different diameters will allow a good press-fit and if necessary, an offset stem will be used. 3- Associated osteosynthesis or not? Stability provided by the press-fit stem may allow not to use an osteosynthesis in most than 50% of cases. If a doubt remains about stability, a small plate can bee added on the medial tibial side of the tibia. 4- Which immediate post-op follow-up? Full weight bearing will be immediate. A splint will be used only for walking during six weeks. A standard rehabilitation protocole will be followed. In our 11 patients with a short follow up (1 to 5 years) complications consisted in one hematom and one phlebitis. Post-operative alpha angle was 96° and beta angle 91°. TKR with an associated osteotomy seems to be a possible alternative when osteoarthritis is associated with an important extra articular deformity.