header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 6 - 6
2 Jan 2024
Orellana F Grassi A Wahl P Nuss K Neels A Zaffagnini S Parrilli A
Full Access

A comprehensive understanding of the self-repair abilities of menisci and their overall function in the knee joint requires three-dimensional information. However, previous investigations of the meniscal blood supply have been limited to two-dimensional imaging methods, which fail to accurately capture tissue complexity. In this study, micro-CT was used to analyse the 3D microvascular structure of the meniscus, providing a detailed visualization and precise quantification of the vascular network.

A contrast agent (μAngiofil®) was injected directly into the femoral artery of cadaver legs to provide the proper contrast enhancement. First, the entire knee joint was analysed with micro-CT, then to increase the applicable resolution the lateral and medial menisci were excised and investigated with a maximum resolution of up to 4 μm. The resulting micro-CT datasets were analysed both qualitatively and quantitatively. Key parameters of the vascular network, such as vascular volume fraction, vessel radius, vessel length density, and tortuosity, were separately determined for the lateral and medial meniscus, and their four circumferential zones defined by Cooper.

In accordance with previous literature, the quantitative micro-CT data confirm a decrease in vascular volume fraction along the meniscal zones. The highest concentration of blood vessels was measured in the meniscocapsular region 0, which is characterized by vascular segments with a significantly larger average radius. Furthermore, the highest vessel length density observed in zone 0 suggests a more rapid delivery of oxygen and nutrients compared to other regions. Vascular tortuosity was detected in all circumferential regions, indicating the occurrence of vascular remodelling in all tissue areas.

In conclusion, micro-CT is a non-invasive imaging technique that allows for the visualization of the internal structure of an object in three dimensions. These advanced 3D vascular analyses have the potential to establish new surgical approaches that rely on the healing potential of specific areas of the meniscus.

Acknowledgements: The authors acknowledge R. Hlushchuk, S. Halm, and O. Khoma from the University of Bern for their help with contrast agent perfusions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 102 - 102
1 Jan 2017
Russo A Bianchi M Sartori M Parrilli A Panseri S Ortolani A Boi M Salter D Maltarello M Giavaresi G Fini M Dediu V Tampieri A Marcacci M
Full Access

A critical bone defect may be more frequently the consequence of a trauma, especially when a fracture occurs with wide exposure, but also of an infection, of a neoplasm or congenital deformities. This defect needs to be treated in order to restore the limb function. The treatments most commonly performed are represented by implantation of autologous or homologous bone, vascularized fibular grafting with autologous or use of external fixators; all these treatments are characterized by several limitations.

Nowadays bone tissue engineering is looking forward new solutions: magnetic scaffolds have recently attracted significant attention. These scaffolds can improve bone formation by acting as a “fixed station” able to accumulate/release targeted growth factors and other soluble mediators in the defect area under the influence of an external magnetic field. Further, magnetic scaffolds are envisaged to improve implant fixation when compared to not-magnetic implants.

We performed a series of experimental studies to evaluate bone regeneration in rabbit femoral condyle defect by implanting hydroxyapatite (HA), polycaprolactone (PCL) and collagen/HA hybrid scaffolds in combination with permanent magnets.

Our results showed that ostetoconductive properties of the scaffolds are well preserved despite the presence of a magnetic component. Interestingly, we noticed that, using bio-resorbable collagen/HA magnetic scaffolds, under the effect of the static magnetic field generated by the permanent magnet, the reorganization of the magnetized collagen fibers produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. Only partial healing of the defect was seen within the not magnetic control groups.

Magnetic scaffolds developed open new perspectives on the possibility to exploiting magnetic forces to improve implant fixation, stimulate bone formation and control the bone morphology of regenerated bone by synergically combining static magnetic fields and magnetized biomaterials. Moreover magnetic forces can be exploited to guide targeted drug delivery of growth factors functionalized with nanoparticles.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 80 - 80
1 Jan 2017
Cavallo M Maglio M Parrilli A Martini L Guerra E Pagani S Fini M Rotini R
Full Access

Autologous bone grafting is a standard procedure for the clinical repair of skeletal defects, and good results have been obtained. Autologous vascularized bone grafting is currently the procedure of choice because of high osteogenic potential and resistance against reabsorption. Disadvantages of this procedure include limited availability of donor sites, clinical difficulty in handling, and a failure rate exceeding 10%. Allografts are often used for massive bone loss, but since only the marginal portion is newly vascularized after the implantation non healing fractures are often reported, along with a graft reabsorption. To overcome these problems, some studies in literature tried to conjugate bone graft and vascular supply, with encouraging results. On the other side, several studies in literature reported the ability of bone marrow derived cells to promote neo-vascularization. In fact, bone marrow contains not only hematopoietic stem cells (HSCs) and MSCs as a source for regenerating tissues but also accessory cells that support angiogenesis and vasculogenesis by producing several growth factors. In this scenario a new procedure was developed, consisting in an allogenic bone graft transplantation in a critical size defect in rabbit radius, plus a deviation at its inside of the median artery and vein with a supplement of autologous bone marrow concentrate on a collagen scaffold.

Twenty-four New Zealand male white rabbits (2500–3000 g) were divided into 2 groups, each consisting of 12 animals. Surgeries were performed as follow:

Group 1 (#12): allogenic bone graft (left radius) / allogenic bone graft + vascular pedicle + autologous bone marrow concentrate (right radius)

Group 2 (#12): sham operated (left radius)/ allogenic bone graft + vascular pedicle (right radius)

For each group, 3 experimental time: 8, 4 and 2 weeks (4 animals for each time).

The bone used as graft was previously collected from an uncorrelated study. An in vitro evaluation of bone marrow concentrate was performed in all cases, and at the time of sacrifice histological and histomorphometrical assessment were performed with immunohistochemical assays for VEGF, CD31 e CD146 to highlight the presence of vessels and endothelial cells. Micro-CT Analysis with quantitative bone evaluation was performed in all cases.

The bone marrow concentrate showed a marked capability to differentiate into osteogenic, chondrogenic and agipogenic lineages. No complications such as infection or intolerance to the procedure were reported. The bone grafts showed only a partial integration, mainly at the extremities in the group with vascular and bone marrow concentrate supplement, with a good and healthy residual bone. immunohistochemistry showed an interesting higher VEGF expression in the same group. Micro CT analysis showed a higher remodeling activities in the groups treated with vascular supplement, with an area of integration at the extremities increasing with the extension of the sacrifice time.

The present study suggests that the vascular and marrow cells supplement may positively influence the neoangiogenesis and the neovascularization of the homologous bone graft. A longer time of follow up and improvement of the surgical technique are required to validate the procedure.