It has been hypothesized that a unicompartmental knee arthroplasty (UKA) is more likely to be revised than a total knee arthroplasty (TKA) because conversion surgery to a primary TKA is a less complicated procedure. The purpose of this study was to determine if there is a lower threshold for revising a UKA compared with TKA based on Oxford Knee Scores (OKSs) and range of movement (ROM) at the time of revision. We retrospectively reviewed 619 aseptic revision cases performed between December 1998 and October 2018. This included 138 UKAs that underwent conversion to TKA and 481 initial TKA revisions. Age, body mass index (BMI), time in situ, OKS, and ROM were available for all patients.Aims
Methods
The purpose of this study was to use pharmacogenetics to determine the frequency of genetic variants in our total knee arthroplasty (TKA) patients that could affect postoperative pain medications. Pharmacogenetic testing evaluates patient DNA to determine if a drug is expected to have a normal clinical effect, heightened effect, or no effect at all on the patient. It also predicts whether patients are likely to experience side effects from medicine. We further sought to determine if changing the multimodal programme based on these results would improve pain control or reduce side effects. In this pilot study, buccal samples were collected from 31 primary TKA patients. Pharmacogenetics testing examined genetic variants in genes Aims
Methods
It has been hypothesized that a unicompartmental knee arthroplasty (UKA) is more likely to be revised than a total knee (TKA) because conversion surgery to a primary TKA is available. The purpose of this study was to determine if there is a lower threshold for UKA revisions compared to TKA revisions based on Oxford Knee Scores and range of motion (ROM). We retrospectively reviewed 636 aseptic revision cases performed between 1998 and 2018. This included 137 UKAs that underwent conversion to TKA and 499 TKA revisions. Pre-revision age, body mass index (BMI), time in situ, Oxford Knee Scores, and ROM were available for all patients. T-tests were performed to determine if significant differences existed between the two groups. The minimal clinically important difference (MCID) when comparing Oxford scores between cohorts has been reported as 5 points.Introduction
Methods
Pharmacogenetics evaluates a patient's DNA to determine if a particular drug is expected to have a normal clinical effect, heightened effect, or no effect at all on a patient. It may also predict which patients are most likely to experience side effects from the medications. The purpose of this study was to use pharmacogenetic testing to determine how frequently total knee arthroplasty (TKA) patients have genetic variants to standard postoperative pain medications. We further sought to determine if changing the multimodal program based on these results would improve pain control and reduce side effects. In this prospective, randomized study, buccal cheek swab samples were collected from 31 primary TKA patients. Pharmacogenetics testing was performed on the samples to examine genetic variants in genes OPRM1, CYP1A2, CYP2B6, CYP2C19, CYP3A4, CYP2C9, and CYP2D6. These genes affect the pharmacodynamics and pharmacokinetics of NSAIDs and opioids. We examined the frequency of a genetic variant to one of the multimodal medications we prescribe including celecoxib, hydrocodone, and tramadol. Subjects included 9 men and 22 women. Patients were randomized to one of two groups: the control group received the standard postoperative pain regimen; the study group received a customized regimen based on the pharmacogenetic results. For the first 10 postoperative days patients recorded pain scores, amount of pain medication taken, and any side effects experienced.Introduction
Methods