Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 107 - 107
1 May 2016
Pal B Correa T Vanacore F Amis A
Full Access

Revision knee prostheses are often augmented with intramedullary stems to provide stability following bone loss. However, there are concerns with the use of such stems, including loosening caused by strain-shielding, end-of-stem pain, and removal of healthy bone surrounding the medullary canal. Extracortical fixation plates may present an alternative. The aim of the study was to quantitatively evaluate and compare strain-shielding in the tibia following implantation of a knee replacement component augmented with either a conventional intramedullary stem (design1), or extracortical plates (design2) on the medial and lateral surfaces.

Eight composite synthetic tibiae were implanted with one of the two designs, painted with a speckle pattern, loaded in axial compression (peak 2.5 kN) using a materials test machine, and imaged with a 5-megapixel digital image correlation (DIC) system throughout loading. Bone loss was simulated in all models by removing a volume of metaphyseal bone. For four tibiae, the tibial tray was augmented with a cemented stem (∼150 mm). The others were augmented by extracortical plates (maximum 90 mm long) along the medial and lateral surfaces (Fig. 1). Strains were computed using an ARAMIS 5M software system between loaded and unloaded states in the longitudinal direction, for the medial, posterior and lateral surfaces of the tibiae. Strains were checked locally by use of strain gauge rosettes at three levels on medial, lateral and posterior aspects.

The bone strains measured on the posterior surfaces were reported in three regions; proximal (0–70 mm, where the medial extracortical plate lies), middle (70–130 mm, the stem is present but not the extracortical plates), and distal (130–200 mm, beyond the stem). Mean longitudinal strains for both implant types were comparable in the distal region, and were greater than in the other regions (Fig 2). The mean strains differed considerably in the middle region: 565–715 μstrain with stemmed components 1050–1155 μstrain with plated components. Strains followed a similar pattern in the proximal region, particularly very close (20 mm) to the tibial tray component, where the stemmed component bones (775 ± 160 μstrain) displayed less surface strain than the plated component bones (1210 ± 180 μstrain).

Strain-shielding was observed for both designs. The side plates were shorter than the intramedullary rods, so the region of the bone distal to the plates was not strain-shielded, while the same region was strain-shielded when a stemmed component was implanted. It was also shown that in the region of bone just distal of the tibial tray component, design1 shielded the bone from strain 56% more on average than design2. From these results, it can be speculated that the use of extracortical plate rather than intramedullary stems may lead to improved long-term results of revision TKA, assuming the plates and screws provide adequate stability. The extramedullary fixation system preserves more bone than IM fixation, and has the advantage of allowing use of primary TKA components, cemented over the subframe. Similar components have been developed for the femur.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 185 - 185
1 Mar 2013
Mukherjee K Pal B Gupta S
Full Access

The effects of metal ion release and wear particle debris in metal-on-metal articulation warrants an investigation of alternative material, like ceramics, as a low-wear bearing couple [1]. Short-stem resurfacing femoral implant, with a stem-tip located at the centre of the femoral head, appears to provide a better physiological load transfer within the femoral head and therefore seems to be a promising alternative to the long-stem design [2]. The objective of this study was to investigate the effect of evolutionary bone adaptation on load transfer and interfacial failure in cemented metallic and ceramic resurfacing implant.

Bone geometry and material properties of 3D finite element (FE) models (intact, short-stem metallic and ceramic resurfaced femurs of 44 mm head diameter) were derived from the CT scan data. The FE models consisted of 170352 quadratic tetrahedral elements and 238111 nodes with frictional contact at the implant-cement (μ = 0.3) and stem-bone interfaces (μ = 0.4) and fully bonded cement-bone interface. Normal walking and stair climbing were considered as two different loading conditions. A time-dependant “site specific” bone remodelling simulation was based on the strain energy density and internal free surface area of bone [3]. The variable time-step was determined after each remodelling iteration. The Hoffman failure criterion was used to assess cement-bone interfacial failure.

Predicted change in bone density due to bone remodelling was very much similar in both the metallic and ceramic resurfaced femurs (Fig. 1). Both the metallic and ceramic implant resulted in strain reduction in the proximal regions (Region of interest, ROI 2 and 4) and subsequent bone resorption, average bone density reduction by 72% (Fig. 1). Higher strains were generated in ROI 5 and 7, which caused bone apposition, an average increase in bone density of 145% (Fig. 1). The tensile stresses in the resurfacing implants increased with change in bone density; a maximum stress of 83 MPa and 63 MPa were observed in the ceramic and the metallic implants, respectively. The tensile stress in the cement mantle also increased with bone remodelling. Although the cement-bone interface was secure against interface debonding in the post-operative situation, calculations of Hoffman number indicated that risk of cement-bone interfacial failure was increased with peri-prosthetic bone adaptation.

During the remodelling simulation, maximum tensile stress in the implant and the cement was far below its strength. However, with bone adaptation greater volume of cement mantle was exposed to higher stresses which, in-turn, resulted in greater risk of interfacial failure around the periphery of the cement mantle. Both the short-stem ceramic and metallic resurfacing component, under debonded stem-bone interface, resulted in more physiological stress distribution across the femoral head. Based on these results, short-stem ceramic resurfacing component appears to be a viable alternative to the metallic design.