CT-based navigation system in total hip arthroplasty (THA) is widely used to achieve accurate implant placement. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analysis in order to use the system more effectively. We compared the accuracy of registration with this navigation system and land mark matching type navigation system. In this study, we evaluated the influence of the surgical approach to the accuracy of registration. Between June 2015 and February 2016, 28 consecutive uncemented THAs were performed in 26 patients. The preoperative diagnosis was osteoarthritis in 20 hips, osteonecrosis of the femoral hips in 5, and rheumatoid arthritis in 3. The newly developed navigation system was a CT based, surface matching type navigation system. We used newly developed navigation system and commercially available land-mark type CT-based navigation system in the setting of acetabular sockets under the same condition. After we fixed the cementless cup, we measured the cup setting angle of inclination and anteversion on each navigation system. Postoperative assessment was performed using CT one week after the operation, and measured the actual angle of the cup. Approach of operations were performed via posterolateral approach in 14 hips, and Hardinge approach in 14 hips. We calculated the absolute value of the cup angle difference between intra-operative value and post-operative value with each navigation system and compared the accuracy between each navigation system and surgical approach.Introduction
Methods
Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software.Objectives
Materials and Methods
CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. However, its internal structure was a trade secret. Therefore, it was hard to analyze optimal reference points. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analyses in order to use the system more effectively. The purpose of this study was to analyze the optimal area and the number of registration points, which enables to move initial errors into the acceptable range. We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. We made pelvic bone models after THA, a normal shape and acetabular dysplasia model, and performed registration using an originally developed CT based navigation system. At first, we registered point paired matching at 4 points, and surface matching was performed at 53 points, which were placed around the acetabulum. 20 points were on anterosuperior, 10 points were on posterosuperior, 20 points were on posterior around the acetabulum, and 3 points were on the pubis. We selected surface matching points based on the actual operation approach, calculated the accuracy of the error correction, and searched the optimal area and the number of surface matching points.Object
Methods
We treated 60 hips in 60 patients (8 males and 52 females) with cementless THA that were performed from January 2007 to December 2009 in our hospital. 48 osteoarthritis hips, 5 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 61 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method. The amount of change of the pelvic inclination angle between supine and standing position was 0.6 degrees prior to surgery, 0.7 degree at 1 year after surgery and 2.4 degrees at 5 years after surgery. 7 patients prior to surgery, 7 patient at 1 year after surgery and 18 patient at 5 year after surgery changed more than 5 degrees between supine and standing position. The pelvic inclination angles of 23 patients prior to surgery, 19 patients at 1 year after surgery and 35 patients at 5 years after surgery changed in the retroverted direction with posture change. It tended to increase after surgery.Materials and Methods
Results
CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. The purpose of this study was to evaluate the influence of initial error correction according to the differences in the shape of the acetabulum, and correction accuracy associated with operation approach after localization of registration points at anterior or posterior area of the acetabulum. We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. APP is defined by the anterior superior iliac spines and anterior border of the pubic symphysis. We made a bone model of bilateral acetabular dysplasia of the hip, after rotational acetabulum osteotomy(RAO) on one side, and performed registration using infrared-reflective markers. At first, we registered the initial error on navigation system, and calculated the accuracy of the error correction based on each shape of the acetabulum as we increased the surface matching points. Based on the actual operation approach, we also examined the accuracy of the error correction when concentrating the matching points in anterior or posterior areas of the acetabulum.Background
Methods
The shape of proximal femur is important for the selection of implant in total hip arthroplasty (THA). There are few reports about the shape of proximal femur. We analyzed preoperative and postoperative conditions of the proximal femurs of patients before and after total hip arthroplasty with computed tomography (CT) and evaluated the compatibility to the cementless stem. We analyzed 65 hips of 63 patients (10 males and 53 females) who had THA between January 2008 and December 2010 in our hospital. We approximated the center of the femoral head as the center of the inscribed sphere in the femoral head. We defined the axis of proximal femur with the line between the centers of the circles located at 45 mm distal from lesser trochanter (LT) and at 90 mm proximal from LT. We measured the neck-shaft angle of femur, offset of femoral head, and diameter of bone-marrow cavity. After operation, we measured the distance between the stem surface and the edge of the femoral cortex (SF) at 10 mm proximal from LT to evaluate the compatibility of CT. We used PerFix HA cementless stem (Kyocera medical co., Osaka).Objectives
Materials and Methods
The setting angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). It is difficult to set the cup at correct angle in minimally invasive THA by modified Watson-Jones approach. So we use CT-based navigation system. We evaluated the accuracy of with post-operative CT data. We treated 30 hips in 30 patients (7 male and 23 females) by navigated THA. 26 osteoarthritis hips, 2 rheumatoid arthritis hips and 2 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 3.5.2 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Kyocera Medical, Osaka). Appropriate angles and positions of cups were decided on the 3D model of hip joint before operation. According to the preoperative planning, we put the cups with navigation system and stems without navigation system. We measured the anteversion angle with post-operative CT data and 3-dimensional template software.Objectives
Materials and Methods
In Japan, edoxaban has been used for the prevention of venous thromboembolism (VTE) after total knee arthroplasty (TKA) since June 2011. Edoxaban is an oral direct factor Xa inhibitor, expected to be more convenient for the postoperative treatment of TKA. Enoxaparin, a II and Xa inhibitor, was approved in Japan for the prevention of VTE in patients undergoing orthopedics surgery from 2008. In this study, the effect for the prevention of VTE after TKA was compared between these two drugs in Japanese patients. We studied 42 Japanese patients who underwent TKA from May 2011 to April 2012. The operations were performed under general anesthesia, continuous femoral nerve block, an air tourniquet, and using cements for implant fixation. These patients were divided in two groups, use of 30 mg edoxaban once daily (ED group), and use of 1000 IU of enoxaparin twice daily (EN group). The initial dose was administered between 12 and 21 hours after surgery. We compared the incidence of VTE, bleeding complications, D dimer levels, and hemoglobin (Hb) loss. The screening of VTE was performed by enhanced CT scan screening from the chest to the foot on postoperative day 5 or 6 in all patients. The bleeding complication was divided into major bleeding and minor bleeding with Japanese guideline for the prevention of VTE. D dimer levels and Hb levels were preoperatively and postoperative day 1, 3, 5, 7, and 14. The loss of Hb was calculated from preoperative Hb level minus lowest postoperative Hb level.Introduction
Patients and Methods
The anteversion angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). We place the component considering with the change of inclination of pelvis with its posture change. We analyzed the perioperative pelvic inclination angles with posture change and the time course. We treated 40 hips in 40 patients (9 males and 31 females) with cementless THA that were performed from January 2007 to December 2008 in our hospital. 30 osteoarthritis hips, 3 rheumatoid arthritis hips and 7 idiopathic osteonecrosis hips were included. All patients were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB, Feldkirchen, Germany). We used AMS HA cups and PerFix stems (KYOCERA Medical co., Osaka, Japan). The mean age of surgery was 59 years old (35–79 years old). The pelvic inclination angles (PIA) were measured with anteroposterior radiographic image in accordance with the Doiguchi's method.Objectives
Materials and Methods
CentPillar GB HA stem (stryker®) is developed as the stem fitting the Japanese femur, and now there is CentPillar TMZF HA stem (stryker®) as the improvement type of the stem by coating the PureFix HA with plasma spray. We observed the factors which influenced on the stem subsidence between the two-type stems. We intended for 26 hips 23 patients that we performed total hip arthroplasty (THA) during the period between January 2005 and June 2009 and were able to follow up more than three years. 10 males 11 hips and 13 females 15 hips, the mean age at the time of surgery was 56.5 (range, 29–74) years old, and primary diseases were osteoarthritis (OA) in 17 hips, Idiopathic Osteonecrosis of Femoral Head (ION) in six hips, and rheumatoid arthritis (RA) in three hips. 16 hips were treated with the CentPillar GB HA stem (G group), and 10 hips were performed with the CentPillar TMZF HA stem (T group). The examination items are the stem size, the canal fill ratio of the stem (the top of lesser trochanter, the bottom of lesser trochanter, the distal portion of the stem) and the stem alignment (on anteroposterior radiograph and Lauenstein view).Purpose
Materials and Methods
Computer navigation system has been reported as a useful tool to obtain the proper alignment of lower leg and precise implantation in TKA. This system alsoãζζhas shown the accurate gap balancing which was lead to implants longevity and optimal knee function. The aim of this study was determine that the postoperative acquired deep knee flexion would be influenced by intraoperative kinematics on navigated TKA even under anesthesia. Forty knees from 40 patients, who underwent primary TKA (P.F.C. sigma RPF, DePuy Orhopaedic International, Leed, UK) with computer-navigation system (Ci Knee, BrainLAB / DePuy Inc, Leeds, UK), were recruited in this study. These patients were classified into two groups according to the recorded value of maximum knee flexion at three month after surgery: 15 patients who obtained more than 130 degrees of flexion in Group A, and 25 patients less than 130 degrees in Group B. We retrospectively reviewed about intraoperative kinematics in each group, to obtain the clue for post operative deep-flexion. The measurements of intraoperative kinematics were consisted of 3 points: femoral rotation angle (degree) and antero-posterior translation (mm), which were measured as the translation of the lowest points of femoral component to tibial cutting surface, and the joint gap difference between the medial and lateral components gap (mm). All joint kinematic data were recorded at every 10 degrees of flexion from maximum extension to flexion under anesthesia.Purpose
Materials & methods
Accolade TMZF® has the wedged taper shape and is fixed at the middle part. We testified the short term result of Accolade® and investigated the factor of subsidence. We treated 21 hips in 20 patients (6 males and 15 females) with Accolade stem. The mean age was 61.2 years old (40–79 years old). The mean follow-up period was 11.1 months (6–23 months), and those within 5 months after operation were excluded. We measured the width of the stem and the canal of femur at the level of the upper and the lower end of lesser trochanter, and 1 cm above the tip of the stem at operation and at the last follow-up, then calculated the canal fill ratios. We also measured the distance between the tip of the stem and the proximal end of greater trochanter, then calibrated it by directly sizing the acetabular component. The value that subtracted the distance at the last follow-up from the distance at operation meant subsidence. We performed multiple regression study about weight and the canal fill ratio of stem at the level of lower end of lesser trochanter.Purpose
Materials and Methods
Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software.Objectives
Materials and Methods
Many reports were shown about the angle of the cup in total hip arthroplasty (THA) with CT-based navigation system. However, there are few reports about the position of the stem. We investigated the position of the stem in navigated THA. We evaluated the position and alignment of stem which were shown on intra-operative navigation system. We treated 10 hips in 10 patients (1 male and 9 females) by navigated THA. 7 osteoarthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). The positions of stem were decided on the 3D model of femur before operation. According to the preoperative planning, we put the implants with navigation system and recorded the position. We measured the position and alignment of stem with 3D template software after operation. We checked for complications.Objectives
Materials and Methods
The complication of patellofemoral compartment was quite often in total knee arthroplasty. One of the impotant factors in these complications would be the femoral component rotation in TKA. To determine the rotation of the femoral component, the reference of the surgical epicondylar axis (SEA), posterior condylar axis (PCA), AP axis with three dimensional model achieved from computed tomography data were considered. There are some limitations with pre-oprerative CT-based planning such as radio exposure, cost, time and detection of the depth of cartilage. We evaluate the determination of the femoral component rotation with image-free registration method to compare with three-dimensional template system. Thirty six knees were evaluated to determine the femoral component rotation. The reference points were marked to measure the PCA (posterior condylar axis), SEA (surgical transepicondylar axis), and APA (anteroposterior axis, Whiteside line) intra-operatively and calculated the angle from PCA to SEA and PCA to APA with Image free navigation system (BrainLAB). Those knees were preoperatively evaluated the angle deviation from SEA to PCA with three dimensional template system. These angle deviations, which suggested the femoral component rotation obtained from preoperative template system, were statistically compared with the femoral rotation angle in clinical situation.Purpose
Material and Methods
Biomechanical stimuli have fundamental roles in the maintenance and remodeling of ligaments including collagen gene expressions. Mechanical stretching signals are mainly transduced by cell adhesion molecules such as integrins. However, the relationships between stress-induced collagen expressions and integrin-mediated cellular behaviors are still unclear in anterior cruciate ligament cells. Human ACL cells were harvested from ligament samples donated by patients who underwent total knee arthroplasties with informed consents. Interface cells were isolated from the 5-mm-end of ACL. Midsubstance cells were cultured from the middle part of ACL. The cells were seeded onto stretch chambers (2Ä−2 cm, 50,000 cells/chamber) and uni-axial cyclic mechanical stretch (0.5 Hz, 7%) was applied for 2 h using a ST140. RNA samples were reverse-transcripted and quantitative real-time RT-PCR analysis were performed. To inhibit the function of integrin alphaVbeta3 subunit or alpha5 in stretching experiments, anti-human integrin alphaVbeta3 and alpha5 functional blocking antibodies (alphaVbeta3: 20 mg/ml, alpha5: 4 mg/ml) were used. To investigate the cellular attachments responding to mechanical stretch, we observed the distribution of integrins and stress fibers in both ACL cells. The shape of midsubstance cells showed spindle and fibroblastic cellular morphologies. On the other hand, the interface cells displayed chondroblastic appearances such as small and triangular morphologies. The expressions of COL1A1, COL2A1, and COL3A1 genes were detected in the tissue RNAs of interface zones. However, these expressions were decreased in cultured interface cells. In midsubstance cells, the expression of COL1A1 gene was equally detected in both tissues and cultured cells. COL3A1 gene expression was maintained in cultured midsubstance cells. These results indicated that the phenotypes of both ACL cells were changed by cultured conditions, especially in the interface cells. After mechanical stretch, the COL1A1 expression of midsubstance and interface cells were stimulated up to 6 and 14-fold levels of each non-stretched control, respectively. The COL3A1 expressions were also enhanced up to 1.8-fold level of controls by stretching treatment in both cells. Integrin alphaVbeta3 was shifted to the peripheral edge of cells by stretching treatment. In addition, mechanical stretch changed the integrin alphaVbeta3-dependent stress fiber formation in both ACL cells. The functional blocking of integrin alphaVbeta3 inhibited stretch-activated COL1A1 and COL3A1 expressions. However, the functional blocking of integrin alpha5 did not suppress the stretch-induced COL1A1 and COL3A1 expressions in both ACL cells. Cultured interface cells loose their phenotypes in collagen gene expressions. However, mechanical stretch reproduces the expression of COL1A1 and COL3A1 genes in cultured ACL cells. The present study demonstrated that stretch-activated collagen gene expressions depend on the integrin alphaVbeta3-mediated cellular adhesions.