Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 4, Issue 10 | Pages 791 - 800
19 Oct 2023
Fontalis A Raj RD Haddad IC Donovan C Plastow R Oussedik S Gabr A Haddad FS

Aims

In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

Methods

This large-scale, single-institution study included patients of any age undergoing primary TKA (n = 1,375) or UKA (n = 337) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for post anaesthesia care unit (PACU) admission, anaesthesia type, readmission within 30 days, and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 50 - 50
1 Jul 2022
Fontalis A Kayani B Asokan A Haddad IC Tahmassebi J Konan S Oussedik S Haddad FS
Full Access

Abstract

Introduction

The postoperative inflammatory response may be implicated in the aetiology of patient dissatisfaction following Total Knee Arthroplasty. Robotic-arm assisted TKA has been associated with reduced bone and soft tissue trauma. The objective of this Randomised Controlled Trial was to compare the inflammatory response in conventional Jig-based versus robotic arm-assisted TKA and examine the relationship with patient reported outcome measures and functional outcomes.

Methodology

30 patients with knee osteoarthritis were randomised to either conventional or robotic-arm assisted TKA. Blood samples were collected for up to 28 days post-operatively and intraarticular drain samples at 6 and 24 hours, to ascertain the systemic and local inflammatory responses. The Spearman's correlation was utilised to evaluate the relationship with PROMs and functional outcomes.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 113 - 122
1 Jan 2021
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS

Aims

The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups.

Methods

This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 25 - 25
1 Oct 2020
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS
Full Access

Introduction

The objectives of this study were to compare the systemic inflammatory reaction, localised thermal response and macroscopic soft tissue injury outcomes in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic total knee arthroplasty (robotic TKA).

Methods

This prospective randomised controlled trial included 30 patients with symptomatic knee osteoarthritis undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localised knee temperature were collected preoperatively and postoperatively at 6 hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned limb alignment and implant positioning in both treatment groups.


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1479 - 1488
1 Nov 2016
Kalson NS Borthwick LA Mann DA Deehan DJ Lewis P Mann C Mont MA Morgan-Jones R Oussedik S Williams FMK Toms A Argenson JN Bellemans J Bhave A Furnes O Gollwitzer H Haddad FS Hofmann S Krenn V

Aims

The aim of this consensus was to develop a definition of post-operative fibrosis of the knee.

Patients and Methods

An international panel of experts took part in a formal consensus process composed of a discussion phase and three Delphi rounds.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 857 - 862
1 Jul 2014
Abdel MP Oussedik S Parratte S Lustig S Haddad FS

Substantial healthcare resources have been devoted to computer navigation and patient-specific instrumentation systems that improve the reproducibility with which neutral mechanical alignment can be achieved following total knee replacement (TKR). This choice of alignment is based on the long-held tenet that the alignment of the limb post-operatively should be within 3° of a neutral mechanical axis. Several recent studies have demonstrated no significant difference in survivorship when comparing well aligned versus malaligned TKRs. Our aim was to review the anatomical alignment of the knee, the historical and contemporary data on a neutral mechanical axis in TKR, and the feasibility of kinematically-aligned TKRs.

Review of the literature suggests that a neutral mechanical axis remains the optimal guide to alignment.

Cite this article: Bone Joint J 2014;96-B:857–62.