Component position and overall limb alignment following Total Knee Arthroplasty (TKA) have been shown to influence device survivorship and clinical outcomes. However current methods for measuring post-operative alignment through 2D radiographs and CTs may be prone to inaccuracies due to variations in patient positioning, and certain anatomical configurations such as rotation and flexion contractures. The purpose of this paper is to develop a new vector based method for overall limb alignment and component position measurements using CT. The technique utilizes a new mathematical model to calculate prosthesis alignment from the coordinates of anatomical landmarks. The hypothesis is that the proposed technique demonstrated good accuracy to surgical plan, as well as low intra and inter-observer variability. This study received institutional review board approval. A total of 30 patients who underwent robotic assisted TKA (RATKA) at four different sites between March 2017 and January 2018 were enrolled in this prospective, multicenter, non-randomized clinical study. CT scans were performed prior to and 4–6 weeks post-operatively. Each subject was positioned headfirst supine with the legs in a neutral position and the knees at full extension. Three separate CT scans were performed at the anatomical location of the hip, knee, and ankle joint. Hip, knee, and ankle images were viewed in 3D software and the following vertices were generated using anatomical landmarks: Hip Center (HC), Medial Epicondyle Sulcus (MES), Lateral Epicondyle (LE), Femur Center (FC), Tibia Center (TC), Medial Malleolus (MM), Lateral Malleolus (LM), Femur Component Superior (FCS), Femur Component Inferior (FCI), Coronal Femoral Lateral (CFL), Coronal Femoral Medial (CFM), Coronal Tibia Lateral (CTL), and Coronal Tibia Medial (CTM). Limb alignment and component positions were calculated from these vertices using a new mathematical model. The measurements were compared to the surgeons’ operative plan and component targeted positions for accuracy analysis. Two analysts performed the same measurements separately for inter-observer variability analysis. One of the two analysts repeated the measurements at least 30 days apart to assess intra-observer variability. Correlation analysis was performed on the intra-observer analysis, while Bland Altman analysis was performed on the inter-observer analysis.Introduction
Methods
While total knee arthroplasty has demonstrated clinical success, final bone cut and final component alignment can be critical for achieving a desired overall limb alignment. This cadaver study investigated whether robotic-arm assisted total knee arthroplasty (RATKA) allows for accurate bone cuts and component position to plan compared to manual technique. Six cadaveric specimens (12 knees) were prepared by an experienced user of manual total knee arthroplasty (MTKA), who was inexperienced in RATKA. For each cadaveric pair, a RATKA was prepared on the right leg and a MTKA was prepared on the left leg. Final bone cuts and final component position to plan were measured relative to fiducials, and mean and standard deviations were compared. Measurements of final bone cut error for each cut show that RATKA had greater accuracy and precision to plan for femoral anterior internal/external (0.8±0.5° vs. 2.7±1.9°) and flexion/extension* (0.5±0.4° vs. 4.3±2.3°), anterior chamfer varus/valgus* (0.5±0.1° vs. 4.1±2.2°) and flexion/extension (0.3±0.2° vs. 1.9±1.0°), distal varus/valgus (0.5±0.3° vs. 2.5±1.6°) and flexion/extension (0.8±0.5° vs. 1.1±1.1°), posterior chamfer varus/valgus* (1.3±0.4° vs. 2.8±2.0°) and flexion/extension (0.8±0.5° vs. 1.4±1.6°), posterior internal/external* (1.1±0.6° vs. 2.8±1.6°) and flexion/extension (0.7±0.6° vs. 3.7±4.0°), and tibial varus/valgus* (0.6±0.3° vs. 1.3±0.7°) rotations, compared to MTKA, respectively, (where * indicates a significant difference between the two operative methods based on 2- Variances testing, with α at 0.05). Measurements of final component position error show that RATKA had greater accuracy and precision to plan for femoral varus/valgus* (0.6±0.3° vs. 3.0±1.4°), flexion/extension* (0.6±0.5° vs. 3.0±2.1°), internal/external (0.8±0.5° vs. 2.6±1.6°), and tibial varus/valgus (0.7±0.4° vs. 1.1±0.8°) than the MTKA control, respectively. In general, RATKA demonstrated greater accuracy and precision of bone cuts and component placement to plan, compared to MTKA in this cadaveric study. For further confirmation, RATKA accuracy of component placement should be investigated in a clinical setting.
Preoperative templating of femoral and tibial components can assist in choosing the appropriate implant size prior to TKA. While weight bearing long limb roentograms have been shown to provide benefit to the surgeon in assessing alignment, disease state, and previous pathology or trauma, their accuracy in size prediction is continually debated due to scaling factors and rotated views. Further, they represent a static time point, accounting for boney anatomy only. A perceived benefit of robotic-assisted surgery is the ability to pre-operatively select component sizes with greater accuracy based on 3D information, however, to allow for flexibility in refining based on additional data only available at the time of surgery. The purpose of this study was to determine the difference of pre-operative plans in size prediction of the tibia, femur, and polyethylene insert. Eighty four cases were enrolled at three centers as part of an Investigational Device Exemption to evaluate a robotic-assisted TKA. All patients had a CT scan as part of a pre-operative planning protocol. Scans were segmented and implant sizes predicted based on the patients boney morphology and an estimated 2mm cartilage presence. Additional information such as actual cartilage presence and soft tissue effects on balance and kinematics were recorded intra-operatively. Utilizing this additional information, surgical plans were fine tuned if necessary to achieve minimal insert thickness and balance. Data from the Preoperative CT plan sizing and final size were compared to determine the percentage of size and within one size accuracy.Introduction
Methods
There is great interest to provide repeatable and durable treatments for arthritis localized to one or two compartments in the cruciate-ligament intact knee. We report a series of efforts to develop and characterize an implant system for partial knee resurfacing. We studied distal femoral morphology and found that the sagittal-plane relationships between the condylar and trochlear surfaces are highly variable (Figs 1 and 2). In response, we report the design of a multi-compartmental system of implants intended to anatomically resurface any combination of compartments (Fig 3). Finally, we report the results of a pilot fluoroscopic study of the in vivo knee kinematics in patients who received medial, medial plus patellofemoral and bi-condylar knee arthroplasty. The kinematic results suggest these treatments provide a stable knee with intact cruciate ligament function. This work shows various partial knee resurfacing treatments have the potential to provide excellent knee mechanics and clinical outcomes.