Microbiological culture of intraoperative periprosthetic tissue samples (IPTS) is one of the main criteria in diagnosing prosthetic joint infections (PJI) as stated by different guidelines. The current techniques are labor-intensive, prone for contamination and show low sensitivity. The aim of this study was to evaluate the added value of beadmill processing of IPTS and culturing in blood culture bottles (BCBs) over the conventional method of standard agar and broth alone. We conducted a single-center prospective study from May 2017 to January 2018 at the GZA Hospitals, a secondary care hospital (1012 beds) in Antwerp, Belgium. IPTS from patients undergoing revision arthroplasty were consecutively processed. Each IPTS was aseptically divided in two equal parts: one was processed by direct inoculation on agar and in broths (non-homogenized method); the other was transferred in a sterile vial with saline solution and glass beads (EOLabs), homogenized using a mechanic cell disruptor for 30s (Disruptor genie, Scientific Industries), 2mL of the suspension was inoculated in (an)aerobic BCBs, agar plates and broths (homogenized method). Agar plates were incubated for 4d; broths and BCBs in BacT/Alert (bioMerieux) for 14d. Micro-organisms were identified using MALDI-TOF MS (Bruker). Sensitivity (Se) and specificity (Sp) were calculated against the IDSA definition of PJI for different culture sets: non-homogenized and agar/broth; homogenized processing and agar/broth, agar/broth/BCB, agar/BCB. Ethics committee approved the study.Aim
Method