Hip osteoarthritis (OA) is the leading cause for total hip arthroplasty (THA). Although, being considered as the surgery of the century up to 23% of the patients report long-term pain and deficits in physical function and muscle strength may persist after THA. Progressive resistance training (PRT) appear to improve several outcomes moderately in patients with hip OA. Current treatment selection is based on low-level evidence as no randomised controlled trials have compared THA to non-surgical treatment. The primary objective of this trial is to determine the effectiveness of THA followed by standard care compared to 12 weeks of supervised PRT followed by 12 weeks of optional unsupervised PRT, on changes in hip pain and function, in patients with severe hip OA after 6 months. This is a protocol for a multicentre, parallel-group, assessor blinded, randomised controlled superiority trial. Patients aged ≥50 years with clinical and radiographic hip OA found eligible for THA by an orthopaedic surgeon will be randomised to THA or PRT (allocation 1:1). The primary outcome will be change in patient-reported hip pain and function, measured using the Oxford Hip Score. Key secondary outcomes will be change in the Hip disability and Osteoarthritis Outcome Score subscales, University of California Los Angeles Activity Score, 40-meter fast-paced walk test, 30-second chair stand test, and number of serious adverse events.Introduction and Objective
Materials and Methods
The metal on metal implants was introduced without the proper stepwise introduction. The ASR resurfacing hip arthroplasty (RHA) withdrawn due to high clinical failure rates and the large diameter head THA (LDH-THA) are also widely abandoned. Early (2 year) radiostereometry studies does not support early instability as cause of failure but more likely metal wear products. A possible advantage may be maintenance of bone mineral density (BMD). We present 5 year prospective follow up from a randomized series, aiming to report changes from baseline and to investigate links between implant micromotion, Cr & Co ions and BMD. Patients eligible for an artificial hip were randomized to RHA, Biomet LDH-THA or standard Biometric THA. 19, 17 and 15 patients completed 5 year follow-up. All followed with BMD of the femur, acetabulum and for RHA the collum. RHA and THA with whole blood Co and Co. LDH-THA only at 5 year. RHA had marker based RSA of both components, cup only for LDH-THA. Translations were compiled to total translation (TT= √(x2+y2+z2)). Data were collected at baseline, 8 weeks, 6 months, 1, 2 and 5 years. Statistical tests: ANCOVA for TT movement, Spearman's correlation for BMD, Cr, Co and BMI to TT at 5 years RSA: The 5 year median (25%to75%) RHA cup translations were X=-0.00(−0.49 to 0.19) Y=0.15(−0.03 to 0.20), z=0.24(−0.42 to 0.37) and TT 0.58 (0.16 to 1.82) mm. For the LDH-THA X=−0.33(−0.90 to 0.20) Y=0.28(0.02 to 0.54), z=0.43(−1.12 to −0.19) and TT 1.06 (0.97 to 1.72) mm. The TT was statistically different (p<0.05) for the two cups. The RHA femoral component moved X=0.37(0.21 to 0.56) Y=0.02(−0.07 to 0.11), z=-0.01(−0.07 to 0.26) and TT 0.48 (0.29 to 0.60) mm at 5 years. There was no TT movement from year 2. The mean (SD) acetabular BMD was diminished to 93(90–97)% for RHA and 97(93–99.9)% for THA, but LDH-THA maintained 99(95–103)%. Overall femoral BMD was unchanged at 5 years for all interventions, but both stemmed implants lost 17% at the calcar. Median (25%to75%) whole-blood Cr peaked in the LDH-THA group with 1.7 (0.9 to 3.1) followed by RHA 1.2 (0.8 to 5.0) and THA with 0.5 (0.4 to 0.7)ppb. For Co the highest levels were found in RHA with 1.6(0.8 to 4.7) followed by LDH-THA 1.2 (0.7–1.7) and THA 0.2 (0.2 to 0.6) ppb. The only correlations above +/−0.3 for TT were the RHA femoral component with a correlation of 0.47 to BMI, 0.30 to Co and Cr. The ASR cup conversely had a negative correlation of −0.60 to BMI and again, the LDH-THA cup had a negative correlation of −0.37 to Cr. In contrast to registered revision rates, we found significantly larger movement for the Biomet cup than the ASR cup. The metal ion levels were similar. The LDH-THA cup maintained the acetabular BMD best at 5 years, but the difference was small, we are limited by small numbers and the correlations between TT and the covariates showed no clear pattern.
Despite high revision rates, the mean two year migration of the ASRTM cup is within an acceptable threshold. Slightly higher migration rates found for the M2a- Magnum™ Porous Coated Acetabular Component but longer follow up is needed to establish if this implant is at risk. RSA can detect the migration of an implant, and continuous migration is a predictor for failure (1). The ASRTM resurfacing implant was withdrawn from the marked due to excessive failure rate but showed initial femoral component stability. The aim of this study was to investigate the initial implant stability for the ASR cup as a possible explanation for the high revision rate, and to compare it to another metal on metal (MoM) cup.Summary
Introduction
Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own. ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.
We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant.
We inserted two hydroxyapatite (HA)-coated implants with crystallinities of either 50% (HA-50%) or 75% (HA-75%) bilaterally into the medial femoral condyles of the knees of 16 dogs. The implants were allocated to two groups with implantation periods of 16 and 32 weeks. They were weight-bearing and subjected to controlled micromovement of 250 μm during each gait cycle. After 16 weeks, mechanical fixation of the HA-50% implants was increased threefold as compared with the HA-75% implants. After 32 weeks there was no difference between HA-50% and HA-75%. Fixation of HA-75% increased from 16 to 32 weeks whereas that of HA-50% was unchanged. HA-50% implants had 100% more bone ingrowth than HA-75% implants after 16 weeks. More HA coating was removed on HA-50% implants compared with HA-75% implants after both 16 and 32 weeks. No further loss of the HA coating was shown from 16 to 32 weeks. Our study suggests that the crystallinity of the HA coating is an important factor in its bioactivity and resorption during weight-bearing conditions. Our findings suggest two phases of coating resorption, an initial rapid loss, followed by a slow loss. Resorbed HA coating was partly replaced by bone ingrowth, suggesting that implant fixation will be durable.
The clinical use of hydroxyapatite (HA) coating is controversial especially in regard to the long-term performance of the coating and the effects of resorption. In each of 15 consenting patients we inserted two implants, coated with either HA or fluorapatite (FA) into the iliac crest. They were harvested at a mean of 13.6 ± 0.6 months after surgery. Histological examination showed that bone ongrowth on the HA-coated implants was significantly greater (29%) than that on the FA-coated implants. When bone was present on the coating surface the HA coating was significantly thicker than the FA coating. When bone marrow was present, the HA coating was significantly thinner than the FA coating. The reduction in coating thickness when covered by bone or bone marrow was 23.1 ± 9.7 μm for HA and 5.1 ± 1.7 μm for FA (p <
0.01) suggesting that FA is more stable than HA against resorption by bone marrow. The findings suggest that in man the osteoconductive properties of HA coating are superior to those of FA. Resorption rates for both coatings were approximately 20% of the coating thickness per year. Bone ongrowth appears to protect against resorption whereas bone marrow seems to accelerate resorption. No adverse reaction was seen in the surrounding bone.
Bone growth into cementless prosthetic components is compromised by osteoporosis, by any gap between the implant and the bone, by micromotion, and after the revision of failed prostheses. Recombinant human transforming growth factor-β1 (rhTGF-β1) has recently been shown to be a potent stimulator of bone healing and bone formation in various models in vivo. We have investigated the potential of rhTGF-β1, adsorbed on to weight-loaded tricalcium phosphate (TCP) coated implants, to enhance bone ongrowth and mechanical fixation. We inserted cylindrical grit-blasted titanium alloy implants bilaterally into the weight-bearing part of the medial femoral condyles of ten skeletally mature dogs. The implants were mounted on special devices which ensured stable weight-loading during each gait cycle. All implants were initially surrounded by a 0.75 mm gap and were coated with TCP ceramic. Each animal received two implants, one with 0.3 μg rhTGF-β1 adsorbed on the ceramic surface and the other without growth factor. Histological analysis showed that bone ongrowth was significantly increased from 22 ± 5.6% bone-implant contact in the control group to 36 ± 2.9% in the rhTGF-β stimulated group, an increase of 59%. The volume of bone in the gap was increased by 16% in rhTGF-β1-stimulated TCP-coated implants, but this difference was not significant. Mechanical push-out tests showed no difference in fixation of the implant between the two groups. Our study suggests that rhTGF-β1 adsorbed on TCP-ceramic-coated implants can enhance bone ongrowth.