Revision of total knee endoprostheses (TKA) is increasing in number and causes rising healthcare costs. For constrained prostheses, the use of intramedullar femoral stems is standard. However, there is a big variety of available stem types with regard to length, type of fixation (cemented vs. hybrid) and fixation area (diaphyseal vs. metaphyseal). The aim of this biomechanical study was to investigate the primary stability of revision TKA with different stem types and different femoral bone defects, to find out whether smaller or shorter stems may achieve sufficient stability while preserving bone for re-revision. 30 right human femora were collected, fresh frozen and divided in six groups, matching for age, gender, height, weight and bone density. In group 1–3 a bone defect of AORI type F2a (15mm medial) and in group 4–6 a defect of AORI type F3 (25mm on both sides) was created. In all six groups the same modular femoral surface component (Endo-Model-W, Waldemar Link) was used, combined with different stem types (100/ 160 mm cemented / uncemented / standard/ anatomical with / without cone). Additionally, one trial was set up, omitting the modular stem. The correct fit of the implants was confirmed by fluoroscopy. After embedding, specimens were mechanically loaded 10mm medially and parallel to the mechanical femoral axis with an axial force of 2700N and a torsional moment of 5.6Nm at a flexion angle of 15° with respect to the coupled tibial plateau according to in-vivo gait load for 10,000 cycles (1Hz) in a servohydraulic testing machine (Bionix, MTS). The relative movement between implant, cement and distal femur was recorded using a stereo video system (Aramis3D,gom). An axial pull-out test at 1mm/min was performed after dynamic loading.Introduction
Methods