header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 44 - 44
1 Jan 2018
Sculco T De Martino I Sculco P D'Apolito R Nocon A
Full Access

Instability continues to be a troublesome complication after THA and has been reported to be the main indication for revision in the United States, accounting for 22.5% of revisions. Risk factors associated with dislocation include: age of 75 years or older, body mass index (BMI) of 30 kg/m2 or greater, alcohol abuse, and neuro-degenerative diseases such as multiple sclerosis or Parkinson's disease. Dual-mobility articulations have become an increasingly popular option for these “at risk” primary THAs. Few studies have assessed their use in this complex patient population. The purpose of this study was to assess dislocation rate, radiographic outcomes and complications of the dual-mobility articulation in the setting of primary THA for patients at high risk for dislocation at a minimum follow up of 2 years.

We retrospectively reviewed 151 dual mobility acetabular components, that had been performed using a single design (ADM Stryker, Mahwah, NJ) between 2010 and 2014 at a single institution by a single surgeon. The mean age at time of index surgery was 82 years (range, 73–95), 114 patients were female, and mean BMI was 26.2 kg/m2 (range, 16.1–60.9). Dislocation rate and complications associated with dual mobility cups were reviewed, along with the radiographic outcomes after an average follow-up period of 3.6 years (range, 1.9–6.1 years).

The indication for hip replacement was osteoarthritis in all cases. We had one traumatic dislocation which required component revision after intraprosthetic dislocation following an attempt of closed reduction. There were no further dislocations in this cohort. No progressive radiolucencies or component positional changes were seen on radiographic assessment.

At short-term follow-up dual mobility provides a stable reconstruction in patients at high risk of dislocation with excellent radiographic results. Longer follow-up is needed to confirm the durability of these reconstructions.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 12 - 12
1 Jan 2018
De Martino I D'Apolito R Nocon A Sculco P Sculco TP Bostrom M
Full Access

Proximal femoral replacements are commonly used in oncologic limb salvage procedures. Recently, these megaprostheses have been utilized in complex revision arthroplasties where proximal femoral bone is compromised. The purpose of this study is to evaluate the clinical and radiographic survivorship of proximal femoral replacements as a salvage treatment for bone loss after hip arthroplasty. We retrospectively reviewed the clinical and radiographic outcomes of 31 proximal femoral replacements of a single design between 2004 and 2013 at a single institution. The mean age at time of index surgery was 62 years, 58% were female, and mean BMI was 28.1 Kg/m2. The indications and complications associated with megaprosthesis implantation were collected. Average follow-up was 60 months (range 24–120 months). Kaplan-Meier survivorship assessed clinical and radiographic survivorship. Indication for revision, use of a constrained liner and construct length were assessed as risk factors for construct failure.

The indications for proximal femoral replacement were periprosthetic infection (n=12, 38.7%), aseptic loosening (n=10, 32.3%), periprosthetic fracture (n=6, 19.3%), and non-union (n=3, 9.7%). A constrained liner was used in 22 hips (71%). The average length of bone resection was 148 cm (range 81–240 cm). There were nine revisions (29.2%): 3 for infection (9.7%) 2 for dislocation (6.5%), 2 for aseptic loosening (6.5%), and 2 for periprosthetic fracture (6.5%). Two of the 3 infections were in patients treated for infection. Overall survivorship was at 70.8%. There was no relation between the length of the bone resection, indication for revision and failure rate.

Proximal femoral replacement in non-oncologic revision hip arthroplasty demonstrated a high failure rate at 2–10 year follow-up. Despite the high failure rate, the benefits of this salvage construct are that they allow full weight-bearing and allow rapid mobilization with minimal morbidity.