Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 125 - 125
1 Sep 2012
Elsner J Condello V Zorzi C Verdonk P Arbel R Hershman E Guilak F Shterling A Linder-Ganz E Nocco E
Full Access

Statement of Purpose

Meniscal tears are common knee injuries that subsequently lead to degenerative arthritis, attributed to changes in stress distribution in the knee. In such cases there is need to protect the articular cartilage by repairing or replacing the menisci. While traditionally, meniscal replacement involves implantation of allografts, problems related to availability, size matching, cost and risk of disease transmission limit their use. Another optional treatment is that of biodegradable scaffolds which are based principally on tissue engineering concepts. The variability in body response to biodegradable implants and the quality of the tissue formed still pose a problem in this respect, under intense knee loading conditions. Moreover, biological solutions are mostly limited to younger patients <40 years old. Therefore, the goal of this study was, to develop a synthetic meniscal implant which can replace the injured meniscus, restore its function, and relieve pain.

Methods

A composite, non-fixed self-centering discoid-shaped meniscus implant (NUsurafce®, AIC, Memphis, TN), composed of polycarbonate-urethane (PCU) and reinforced circumferentially with UHMWPE fibers is proposed (Fig. 1). The implant geometry was based on an extensive MRI study of over 100 knee scans [1]. The proposed structure aims to mimic the circumferential collagen reinforcement of the natural meniscus. Biomechanical evaluation of the implant was focused on in-vitro measurements of contact pressure under the implant in cadaver knees and computational finite element (FE) analyses [2,3]. Pressure distribution on the tibial plateau (under the meniscus implant) was measured by pressure sensitive films (Tekscan, MA) and quantified with respect to the natural meniscus. FE analyses were used to evaluate internal stress and strains, and to support the selection of optimal implant configuration. The last pre-clinical step was a large-animal (sheep) study in which the cartilage condition was evaluated microscopically over six months [4].


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 126 - 126
1 Sep 2012
Moroni A Hoque M Micera G Orsini R Nocco E
Full Access

Introduction

Metal-on-polycarbonate urethane (MPU) is a cutting-edge new bearing technology for hip arthroplasty. The acetabular component consists of a 2.7mm-thick polycarbonate-urethane liner inserted into a specially manufactured uncemented titanium shell coated with hydroxyapatite [(HA) Fig. 1]. The liner is pliable and biomechanically mimics human cartilage. In vitro studies have shown minimal wear, fluid film lubrication, physiological load transmission and shock absorption capacity equal to the normal hip. This system includes prosthetic heads of a diameter 12mm less than the socket diameter. The aim of this study was to clinically assess patients treated with this novel technology in a retrospective single centre study.

Methods

Twenty-seven patients with osteoarthritis treated with MPU bearing arthroplasty were included. Mean patient age was 67.9±10.35 years (44–84). Sixteen patients were female and 11 were male. Twenty-four of these had an uncemented HA-coated stem while 3 had a hip resurfacing metal femoral component. All patients were operated on by a single surgeon using a postero-lateral approach.