Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 2 - 2
23 Jan 2023
Newton Ede M Pearson MJ Philp AM Cooke ME Nicholson T Grover LM Jones SW
Full Access

To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS.

Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure. Osteoblasts were then cultured from the sampled bone. Osteoblast phenotype was investigated by assessing cellular proliferation (MTS assay), cellular metabolism (alkaline phosphatase and Seahorse Analyser), bone nodule mineralisation (Alizarin red assay), and the mRNA expression of Wnt signalling genes (quantitative RT-PCR).

Convex bone showed greater bone mineral density and trabecular thickness than did concave bone. The convex side of the curve apex exhibited a significantly higher proliferative and metabolic phenotype and a greater capacity to form mineralised bone nodules than did concave osteoblasts. mRNA expression of SKP2 was significantly greater in both concave and convex osteoblasts than in non-curve osteoblasts. The expression of SFRP1 was significantly downregulated in convex osteoblasts compared with either concave or non-curve.

Intrinsic differences that affect osteoblast function are exhibited by spinal facet osteoblasts at the curve apex in patients with AIS.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 1 - 1
1 Aug 2022
Nicholson T Foster N Haj AE Ede MN Jones S
Full Access

We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential phenotype, compared to non-curve osteoblasts(1). However, the Hueter-Volkmann principle on vertebral body growth in spinal deformities (2) suggests this could be secondary to altered biomechanics. This study examined whether non-curve osteoblasts subjected to mechanical strain resemble the transcriptomic phenotype of curve apex osteoblasts.

Facet spinal tissue was collected perioperatively from three sites, (i) the concave and (ii) convex side at the curve apex and (iii) from outside the curve (non-curve) from six AIS female patients (age 13–18 years; NRES 19/WM/0083). Non-curve osteoblasts were subjected to strain using a 4-point bending device. Osteoblast phenotype was determined by RNA sequencing and bioinformatic pathway analysis.

RNAseq revealed that curve apex osteoblasts exhibited a differential transcriptome, with 1014 and 1301 differentially expressed genes (DEGs; p<0.05, fold-change >1.5) between convex/non-curve and concave/non-curve sites respectively. Non-curve osteoblasts subjected to strain showed increased protein expression of the mechanoresponsive biomarkers COX2 and C-Fos. Comparing unstimulated vs strain-induced non-curve osteoblasts, 423 DEGs were identified (p<0.05, fold-change >1.5). Of these DEGs, only 5% and 6% were common to the DEGs found at either side of the curve apex, compared to non-curve cells. Bioinformatic analysis of these strain-induced DEGs revealed a different array of canonical signalling pathways and cellular processes, to those significantly affected in cells at the curve apex.

Mechanical strain of AIS osteoblasts in vitro did not induce the differential transcriptomic phenotype of AIS osteoblasts at the curve apex.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 188 - 191
1 Mar 2021
Nicholson T Scott A Newton Ede M Jones SW