header advert
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 73 - 73
1 Mar 2013
Howie D Holubowycz O Neale S Callary S Solomon L
Full Access

Introduction

There has been almost universal adoption of highly cross-linked polyethylene as the polyethylene of choice in metal-on-polyethylene articulations in total hip replacement (THR). Although wear of conventional polyethylene has been shown to be related to periprosthetic osteolysis, the relationship between wear of highly cross-linked polyethylene and osteolysis remains uncertain. Our aim was to determine the incidence and volume of periacetabular osteolysis at a minimum of seven years following primary THR with metal on highly cross-linked polyethylene articulations.

Methods

644 patients were enrolled into a randomised controlled trial which examined the effect of articulation size (28 vs 36 mm) on the incidence of dislocation one year following THR. To date, 62 patients (34 patients – 28 mm articulation; 28 patients – 36 mm articulation) have undergone a quantitative computed tomography (CT) scan, with metal artefact reduction protocol, to detect and measure osteolysis at a minimum of seven years following THR. Osteolysis was defined as a localised area of bone loss of at least 1 cm3 that is expansile, with a well-defined sclerotic border, a clear communication between the defect and the joint space and the absence of acetabular cysts. Pre-operative and post-operative plain radiographs were examined to identify the existence of acetabular cysts. Polyethylene wear from one to seven years following THR was also measured, using a computerised edge detection technique (PolyWare Rev 5, Draftware) of analysing standard radiographs.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 83 - 83
1 May 2012
Howie D Kane T Neale S Stamenkov R Taylor D Findlay D
Full Access

The aim of this study was to examine the progression of osteolytic lesions following liner exchange surgery and relate this to the size of the lesion prior to surgery, and whether the defect underwent curettage and bone grafting during surgery.

Six patients with well-fixed Harris-Galante-1 acetabular components underwent liner exchange surgery for excessive polyethylene wear and osteolysis. The mean interval from primary arthroplasty to revision was 14 years (range 11–17 years). All patients underwent a CT scan pre-operatively to identify the location and size of the osteolytic lesions and during surgery, accessible lesions were curetted and bone grafted. One patient had recurrent dislocations and the acetabular component was revised one year following liner exchange surgery. The remaining five patients had CT scans taken at a mean of five months (range 3–5 months) and 5 years (range 3.4–8.2 years) following surgery. Osteolytic lesion volume with or without bone grafting was measured.

Of the 19 osteolytic lesions detected pre-operatively, the first post-operative CT scan showed that four lesions were fully bone-grafted, ten lesions were partially bone-grafted and five lesions had no bone grafting during surgery. At a minimum of three years following surgery, all fully bone-grafted lesions remained full of bone- graft. Of the ten partially bone-grafted lesions, the osteolytic non-grafted zone decreased in volume in five lesions and five lesions remained unchanged. Of the five osteolytic lesions with no bone grafting, one lesion increased in volume, one lesion decreased in volume and three lesions remained unchanged. No new lesions were detected in any of the hips.

These preliminary results suggest that liner exchange surgery is effective in treating periacetabular osteolysis. Although bone grafting appears to aid in restoring bone stock, it is not essential in halting the progression of osteolysis, which likely results from the ongoing production of polyethylene particles in the joint.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 107 - 107
1 May 2012
Solomon B Stamenkov R Yaikwavong N Neale S Pilkington D Taylor D Findlay D Howie D
Full Access

Sensitive and accurate measures of osteolysis around TKR are needed to enhance clinical management and assist in planning revision surgery. Therefore, our aim was to examine, in a cadaver model of osteolysis around TKR, the sensitivity of detection and the accuracy of measuring osteolysis using Xray, CT and MRI.

Fifty-four simulated osteolytic lesions were created around six cadaver knees implanted with either a cemented or cementless TKR. Twenty-four lesions were created in the femur and thirty in the tibia ranging in size from 0.7 cm3 to 14 cm3. Standard anteroposterior and lateral fluoroscopically guided radiographs, CT and MRI scans with metal reduction protocols were taken of the knees prior to the creation of lesions and at every stage as the lesion sizes were enlarged. The location, number and size of the lesions from images obtained by each method were recorded.

The sensitivity of osteolytic lesion detection was 44% for plain radiographs, 92% for CT and 94% for MRI. On plain radiographs, 54% of lesions in the femur and 37% of lesions in the tibia were detected. None of the six posterior lesions created in the tibia were detected on the AP radiographs; however, three of these six lesions were detected on the lateral radiographs. CT was able to detect lesions of all sizes, except for four lesions in the posterior tibia (mean volume of 1.2 cm3, range 1.06–1.47 cm3). Likewise, MRI was very sensitive in detecting lesions of all sizes, with the exception of three lesions, two of which were in the femur and one was in the medial condyle of the tibia (mean volume of 1.9 cm3, range 1.09–3.14 cm3). Notably, all six posterior tibial lesions, which could not be detected using AP radiographs, were detected by MRI.

This study demonstrates the high sensitivity of both CT and MRI (which uses no ionising radiation) to detect simulated knee osteolysis and can therefore be used to detect and monitor progression of osteolysis around TKR. The study also shows the limitations of plain radiographs to assess osteolysis.