Pin loosening and infection are inherent complications of external fixation. This study deals with their effects of using either hydroxyapatite (HA)-coated or uncoated external fixation pins in leg-lengthening procedures on patients of short stature. We used HA-coated pins on one side and uncoated pins on the other (randomly determined) in 28 bilateral lengthenings undertaken in 23 patients. A total of 322 pins was used. The mean implantation time was 530 days and the mean lengthening achieved was 78% of initial bone length. Mean extraction torque was 7611.6 Nmm degree−1 for HA-coated and 85.4 Nmm degree−1 for uncoated pins (p <
0.001). The rate of pin loosening was 4% (7/ 161) for HA-coated and 80% (129/161) for uncoated pins (p <
0.001). There was no statistically significant difference in the incidence of pin-track infection between the two groups. The use of HA coating appears to be an effective method of reducing the incidence of pin loosening in external fixation with a long implantation time and for mechanically highly stressed procedures such as leg lengthening for short stature.
Background: Tibial valgus, a known complication of leg lengthening by external fixation, has been related to stability of the bonefixator system and, in particular to pin loosening. Hydroxyapatite coating has been reported to enhance the quality of the bone-pin interface. The aim of this study was to compare the incidence of axial deformity between tibial lengthening procedures with hydroxyapatite-coated and non-coated external-fixation pins. Methods: A prospective trial was conducted on 34 symmetrical tibial lengthenings in 17 pathologically-short patients. For each pair of bones, one side to be lengthened with hydroxyapatite-coated pins and the other with standard uncoated pins were randomly selected. The bone angle in the frontal plane was measured before the operation and at the end of the fixation period. The difference was calculated and compared between lengthenings performed with coated and uncoated pins. Results: Mean deviation into valgus of the tibiae was 6.5° with hydroxyapatite-coated pins and 12.5° with uncoated pins (p=0.023). Other factors previously related to valgus deformity did not significantly differ between groups. Conclusions: Tibial lengthenings performed with hydroxyapatite-coated external-fixation pins are less prone to axial deviation in the frontal plane than those without it.