Accurate positioning of the acetabular component is essential for achieving the best outcome in total hip arthroplasty (THA). However, the acetabular shape and anatomy in severe hip dysplasia (Crowe type IV hips) is different from that of arthritic hips. Positioning the acetabular component in the acetabulum of Crowe IV hips may be surgically challenging, and the usual surgical landmarks may be absent or difficult to identify. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component as assessed by morphometric geometrical analysis and its reliability. A total of 52 Crowe IV and 50 normal hips undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiographic inclination of 40° and anteversion of 20° (Figure 1). Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis (Figure 2). To describe major trends in shape variations within the sample, we performed a principal component analysis of partial warp variables (Figure 3).Aims
Patients and Methods
Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1]. In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state. The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment. Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium). The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane. The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2]. It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state. In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment. CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia. Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly. There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7]. This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement. Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first. For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3). The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures.Introduction
Materials and Methods
The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain. A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1).Introduction
Methods
Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05.Introduction
Materials and Methods
Antibiotic-loaded acrylic cement (ALAC) is employed in the treatment or prevention of infected total hip arthroplasty (THA). We have administered vancomycin (VCM) as the ALAC for the treatment of THAs with methicillin-resistant Staphylococcus aureus, or for the prevention of THAs with high risks. This study aimed to evaluate the serum concentration of VCM from ALAC in THA or cement beads. Between December 2013 and February 2014, 16 hips (16 patients) underwent application of the ALAC including VCM at our institution. Two hips were used for the treatment of infection, in the first stage of two-staged revision THAs (i.e., cement beads). Two hips were used for the both treatment and prevention of infection, in one-staged revision THAs. Twelve hips were used for the prevention of infection, in aseptic revision THAs or primary THAs with high risks. Patients were classified into two groups depending on the VCM concentration of ALAC, as follows: high-dose group (2 hips), average 4.4% (3.8–5.0%); low-dose group (14 hips), average 1.6% (1.3–2.5%). The amount of VCM placed as ALAC into the hip was calculated by using the remaining ALAC. The serum concentration of VCM was evaluated at 1 day, 4 days, 7 days, and 28 days after surgery. Statistical analysis was performed by using the Introduction
Methods
A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component. A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs.Introduction
Methods
Total knee arthroplasty (TKA) is one of the most successful and beneficial treatments for osteoarthritic knees. We have developed posterior-stabilized (PS) total knee prosthesis for Asian patients, especially Japanese patients, and have used it since November, 2010. The component was designed based on the CT images of osteoarthritic knees, aiming to achieve deep flexion and stability. The purpose of this study was to analyze We analyzed a total of 28 knees implanted with PS TKAs: Fourteen knees with the new PS prosthesis (group A), and the other fourteen knees with a popular PS prosthesis as a control group (group B). Preoperative data of both groups were not significantly difference. Flat-panel radiographic knee images were recorded during five static knee postures including full extension standing, lunge at 90° and maximum flexion, and kneeling at 90° and maximum flexion. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques. The results of this shape-matching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 to 1.0 mm for translations in the sagittal plane. Unpaired t-tests were used for statistical analysis and probability values less than 0.05 were considered significant.INTRODUCTION
METHODS
The diagnosis of implant-associated infections is challenging, and the conventional culturing of periprosthetic tissue has been the gold standard for diagnosis of implant-associated infections. However, conventional diagnostic tests are inaccurate because the pathogenesis of implant-associated infection is related to microorganisms growing in biofilms. We compared culture of samples obtained by sonication of explanted implants to dislodge adherent bacteria from implants with conventional culture of periprosthetic tissue. The purpose of this study is to evaluate the results of sonication that is microbiological diagnostic method for implant-associated infections. Between January 2013 and April 2013, a total of 19 consecutive patients underwent the removal of implants at our institution. There were 15 women and 4 men with a mean age of 71 years (32 to 90) at the time of the operation. Implants were removed because of aseptic loosening in 9 patients, infection in 6 patients, necrosis in 2 patients, dislocation in 1 patient and implant fracture in 1 patient. Removed implants, including 17 joint prostheses and 2 fracture fixation devices, were subjected to sonication in a BactoSonic (BANDELIN, Germany). Preoperative bacterial culture, intraoperative conventional culture of periprosthetic tissue, intraoperative culture of sonicate-fluid, and pathological examination were assessed.Introduction:
Materials and Methods:
Moderately crosslinked polyethylene maintains a balance of wear resistance and mechanical properties. The GVF poly was manufactured from GUR1020 UHMWPE bars, sealed in vacuumed foil package, and gamma sterilized at 4 Mrads. The MARATHON® polyethylene inserts were manufactured from GUR1050 UHMWPE bars, crosslinked by gamma irradiation at 5 Mrad, and followed by a remelting process that eliminates free radicals. The final sterilization method is gas plasma (GP) or ethylene oxide (EtO). Both methods will not introduce free radicals. Previous studies have shown MARATHON polyethylene (GP sterilized) with 83% lower wear than conventional polyethylene in a simulation test [1], compared to a 10-year clinical study that showed 77% wear reduction [2]. There is no study to compare the wear performance of MARATHON (EtO sterilized) and conventional poly. Four groups of polyethylene inserts (Table 1) were paired with matching femoral heads that were manufactured from CoCrMo (ASTM F1537) with diameters of 28, 32, and 36 mm. The inserts were chosen to have similar thickness at the dome for MARATHON, while for GVF it was the largest head size available. Wear testing was performed on an AMTI Hip Simulator per the ISO 14242-1 standard [3] at 1 Hz using the described inputs (Table 2), which provide a larger range of motion than the ISO standard. The cups were mounted in accordance with ISO 14242-1 using custom fixturing and secured with cement while the femoral heads were mounted on a vertical taper support. Testing was performed in 25% bovine calf serum at 37 ± 2°C. Wear of the inserts was determined gravimetrically. Finally, wear rates were calculated by linear regression and then compared between the groups using ANOVA analysis (α = 0.05).Introduction:
Materials and Methods:
Although proximal tibia vara is physiologically and pathologically observed, it is difficult to measure the varus angle accurately and reproducibly due to inaccuracy of the radiograph because of rotational and/or torsional deformities. Since tibial coronal alignment in TKA gives influence on implant longevity, intra- or extra-medurally cutting guide should be set carefully especially in cases with severe tibia vara. In this context, we measured the proximal tibial varus angle by introducing 3D-coordinate system. Three-dimensional models of 32 tibiae (23 females, 9 males, 71.2 ± 7.8 y/o) were reconstructed from CT data of the patients undergoing CT-based navigation assisted TKA. Clinically relevant mid-sagittal plane is defined by proximal tibial antero-posterior axis and an apex of the tibial plafond. After the cross-sectional contours of the tibial canal were extracted, least-square lines were fitted to define the proximal diaphyseal and the metaphyseal anatomical axis. The proximal tibia vara was firstly investigated in terms of distribution of proximal anatomical axis exits at the joint surface. TVA1 and TVA2 were defined to be a project angle on the coronal plane between the metaphyseal tibial anatomical axis and the proximal diaphyseal anatomical axis, and that between the metaphyseal tibial anatomical axis and the tibial functional axis, respectively. The correlations of each angle with age and femoro-tibial angle (FTA) were also examined. The proximal anatomical axis exits distributed 4.3 ± 1.7 mm medially and 17.1 ± 3.4 mm anteriorly. TVA1 and TVA2 were 12.5 ± 4.5°(4.4?23.0°) and 11.8 ± 4.4° (4.4?22.0°), respectively. The correlations of FTA with TVA1 (r=0.374, p<0.05) and TVA2 (r=0.439, p<0.05) were statistically significant.Materials & Methods
Results
It is still controversial whether one or two-stage revision should be indicated for deeply infected hip prosthesis, and there are no scoring systems for the decision of them. An assessment system for the treatment of deeply infected hip prosthesis was evaluated for the patients who had undergone one or two-stage revision total hip arthroplasty (THA). Between February 2001 and November 2009, revision THA for deep infection was carried out in 60 hips on 59 patients by the senior authors. Nineteen hips underwent one-stage revision THA using antibiotic-loaded acrylic cement (ALAC), and 41 hips did two-stage revision THA using ALAC beads, based on the criteria by Jackson and Schmalzried. This study included 47 revisions in 47 patients for which a minimum follow-up of two years (average 4.7 years). Six parameters were employed in the assessment system: 1) general condition, 2) duration of infection, 3) wound complication after initial operation, 4) microorganism, 5) C-reactive protein (CRP), and 6) necessity for grafting bone. Each parameter ranged from 0 to 2 points, giving a full score of 12 points. Healing was defined as the lack of clinical signs and symptoms of infection, a CRP level < 10 mg/l or an erythrocyte sedimentation rate < 20 mm/h, and the absence or radiological signs of infection at the follow-up visit > 24 months after first revision, described by Giulieri et al.Introduction
Materials and Methods
The accuracy of pedicle screw placement is essential for successful spinal reconstructive surgery. The authors of several previous studies have described the use of image-based navigational templates for pedicle screw placement. These are designed based on a pre-operative computed tomographic (CT) image that fits into a unique position on an individual's bone, and holes are carefully designed to guide the drill or the pedicle probe through a pre-planned trajectory. The current study was conducted to optimise navigational template design and establish its designing method for safe and accurate pedicle screw placement. Thin-section CT scans were obtained from 10 spine surgery patients including 7 patients with adolescent idiopathic scoliosis (AIS) and three with thoracic ossification of the posterior longitudinal ligament (OPLL). The CT image data were transferred to the commercially available image-processing software and were used to reconstruct a three-dimensional (3D) model of the bony structures and plan pedicle screw placement. These data were transferred to the 3D-CAD software for the design of the template. Care was taken in designing the template so that the best intraoperative handling would be achieved by choosing several round contact surfaces on the visualised posterior vertebral bony structure, such as transverse process, spinous process and lamina. These contact surfaces and holes to guide the drill or the pedicle probe were then connected by a curved pipe. STL format files for the bony models with planned pedicle screw holes and individual templates were prepared for rapid prototype fabrication of the physical models. The bony models were made using gypsum-based 3D printer and individual templates were fabricated by a selective laser melting machine using commercially pure titanium powder. Pedicle screw trajectory of the bony model, adaptation and stability of the template on the bony model, and screw hole orientation of the template were evaluated using physical models. Custom-made titanium templates with adequate adaptation and stability in addition to proper orientation of the screw holes were sterilised by autoclave and evaluated during surgery. During segmentation, reproducibility of transverse and spinous processes were inferior to the lamina and considered inadequate to select as contact surfaces. A template design with more bone contact area might enhance the stability of the template on the bone but it is susceptible to intervening soft tissue and geometric inaccuracy of the template. In the bony model evaluation, the stability and adaptation of the templates were sufficient with few small round contact surfaces on each lamina; thus, a large contact surface was not necessary. In clinical patients, proper fit for positioning the template was easily found manually during the operation and 141/142 screws were inserted accurately with 1 insignificant pedicle wall breach in AIS patient. This study provides a useful design concept for the development and introduction of custom-fit navigational template for placing pedicle screws easily and safely.
Although optimal alignment is essential for improved function and implant longevity after TKA, we have less bony landmarks of tibia relative to femur. Trans-malleolar axis (TMA) is a reference line of distal tibia in the axial plane, which externally rotated relative to a ML axis of proximal tibia. We originally defined another reference axis associated with the orientation of tibial plafond, and then measured tibial torsion in the 3D-coordinate system. Three-dimensional CAD models of 20 tibiae were reconstructed based on pre-operative CT data from OA patients (16 females and 4 males, 73.8 ± 6.9 years old). TMA was a line connecting each apex of medial and lateral malleolus. The plafond axis (PLA) that we originally defined in this study was a line connecting each midpoint of medial and lateral margin of talocrural facet. In terms of interobserver correlation coefficiency and mean errors of the designated points to define those axes, TMA was found out to be 0.982, 3.14 ± 0.47 mm (medial), and 0.988, 4.88 ± 0.59 mm (lateral). Those of PLA were 0.997, 1.97 ± 0.53 mm (medial), and 0.995, 2.02 ± 0.44 mm (lateral). The tibial torsion was 16.3 ± 6.3°with reference to TMA, and 10.2 ± 8.4°to PLA. Based on these results, as for the rotational reference axis in the axial plain of distal tibia, we consider the plafond axis to be another reliable and reproducible axis, which is expected to be applicable in preoperative planning in TKA to reduce outliers of coronal alignment.
It is very important to fix implant to bone. Bioactive materials as hydroxyapatite or glass-ceramics have bone-bonding ability. Hydroxyapatite-coating is applied to cementless THA or TKA. I and coworkers investigated bone-bonding mechanism of bioactive material and found that bone-like apatite formation play key role for bonding. If the surface of metal is changed to form apatite on it in body, the inert metal changes into bone-bonding material. We developed alkaline and heat treatment of titanium to change titanium to bone –bonding material as follows. At first, titanium is dipped in 5N NaOH solution for 24 hours, at second the metal is washed in pure water and finally it is sintered in 500 degree C for 2 hours. The treated surface has bioactivity, bone bonding ability like hydroxyapatite. The advantage of this treatment over hydroxyapatite-coating procedure is to treat the porous surface without any change of pore figures. As to hydroxyapatite-coating procedure, pore of the small diameter is filled with hydroxyapatite and pore figures are change. We applied this alkaline and heat treatment to cementless THA and its good results of more than ten years was reported. Porous titanium can be changed to bioactive material by alkaline and heat treatment. This bioactive porous titanium was found to have a property of material-induced osteoinduction, that is, the bone formation in pore of porous titanium implanted in canine back muscle. They can be used for bone substitute for big bone defect. We used two procedures to make porous titanium, sintering of titanium powder with spacer particle of ammonium sulfate and selective lazar melting. The latter procedure can produce any type of pore structure of titanium. Selective laser melting was employed to fabricate porous Ti implants (diameter 3.3 mm, length 15 mm) with a channel structure comprising four longitudinal square channels, representing pores, of different diagonal widths, 500, 600, 900, and 1200 micrometer. These were then subjected to chemical and heat treatments to induce bioactivity. Significant osteoinduction was observed in widths 500 and 600 micrometer, with the highest observed osteoinduction occurring at 5 mm from the end of the implants. A distance of 5 mm probably provides a favorable balance between blood circulation and fluid movement. New bioactive bone cement is another topic of the application of bioactive titanium in this lecture. The bone cement contains barium sulphate for radiocontrast. We developed a procedure to replace barium sulphate with bioactive titanium powder. This new bone cement has not only better biocompatibility than conventional cement but also bone bonding ability. It is potent material for the fixation of implant to bone. I will speak the evaluation of this cement using canine model of THA.
Achieving high flexion after total knee arthroplasty is very important for patients in Asian countries where deep flexion activities are an important part of daily life. The Bi-Surface Total Knee System (Japan Medical Material, Kyoto, Japan), which has a unique ball-and-socket mechanism in the mid-posterior portion of the femoral and tibial components, was designed to improve deep knee flexion and long-term durability after total knee arthroplasty (Figure 1). The purpose of this study was to determine the in vivo three dimensional kinematics of Bi-Surface Total Knee System in order to evaluate and analyze the performance of this system with other conventional TKA designs currently available in the market today. Three dimensional kinematics were evaluated during a weight-bearing deep knee bend activity using fluoroscopy and a 2D-to-3D registration technique for 66 TKA. Each knee was analyzed to determine femorotibial kinematics, including weight-bearing range of motion, anterior/posterior contact position, and tibio-femoral rotation.Introduction
Materials and Methods
Recently, total knee arthroplasty (TKA) has been generalized as an operation that achieves excellent clinical results. However, younger and Asian patients require even greater implant longevity and functional performance. We hypothesized a novel posterior cruciate-retaining TKA design that restores the anatomical jointline in both sagittal and coronal planes, maintains the femoral posterior condylar offset, and provides low contact stress would provide enhanced patient function with the potential for greater implant longevity. The novel TKA design was created based on geometry determined from anatomic specimens, 3-degree step of femorotibial jointline was incorporated in the TKA design for Asian. The novel TKA has an asymmetrical design between the medial and lateral femoral condyle, the medial femoral condyle designed to be 3 degrees larger than the lateral femoral condyle. It refined using finite element analyses (FEA) to minimize peak contact stresses. The alignment evaluation after TKA was performed using using bidirectional CR and CT images. Femorotibial-angle (FTA), the position of the femoral component relative to the 3D mechanical axis, and the rotational alignment of the femoral component relative to the PC line were evaluated before and after TKA to identify changes in the femoral condylar shape. The kinematic evaluation after TKA was performed using a 3D-to-2D model registration technique. Single-plane fluoroscopic imaging was used to record and quantify the motions of knees during a stair-step activity. The contact points between the tibiofemoral motions and the tibial rotational angle were evaluated.Aims
Methods
One cementless cup which had porous outer surface with Apatite-Wollastonite glass ceramic (AWGC) coating, was revised 13 years after primary THA because of massive osteolysis expanded to medial iliac wall along the screws. While many retrieved studies of hydroxyapatite-coated cup have been reported, there has been no report on the retrieved cup with AWGC coating. The purpose of this study was to describe this rare case in detail, confirm the bone ingrowth to the porous cup, and discuss on the effectiveness of porous surface with AWGC coating. The patient was a 64 old woman and complained of chronic mild pain around her left groin region. X-ray examination revealed that osteolysis had been expanding around the screws and extended proximally. The revision surgery was performed for the massive osteolysis through Hardinge antero-lateral approach. The retrieved implants included a cementless cup made of titanium alloy (QPOC cup, Japan Medical Materirals Inc.(JMM) Osaka, Japan), the outer surface of which was plasma-sprayed with titanium for porous formation and coated with AWGC in the deep layer. It was found that the polyethylene liner was destructed partially in the supero-lateral portion, but the cup was well fixed to the bone. The bone-attached area was found to be dispersed over the porous surface of the hemispherical cup. Histological examination revealed that matured bony tissue intruded into the porous surface of the cup, and contacted to bone directly, which was also demonstrated in the back-scattered electron image. It was also demonstrated that there were residual silicon (Si) rich regions on the porous surface by the SEM-EDX analysis, which indicated that constituents of AWGC still remained on the surface. On the other hand, the results of elementary analyses in the Si rich regions varied among the sections, which probably indicated that the extent of degradation and absorption of AWGC varied among the sections. AWGC was one of the bioactive ceramics and reported to have an ability to bond to bone earlier than hydroxyapatite (HA). In the present case, though massive osteolysis occurred with aggressive wear, it did not expand on the porous surface, and rather progressed along the smooth surface of the screws. Considering that there are many clinical studies reporting poor clinical results of HA-coated smooth cups, bioactive ceramic coating may function well and bring superior clinical results when combined with porous coated substrate. In our study, though the cause of massive polyethylene wear and intrapelvic giant osteolysis could not be revealed, the porous cup with AW-GC bottom coating was well fixed and gained bone-ingrowth at the porous surface under osteolytic conditions, which may demonstrate the long-term durability of this surface treatment.Case