Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 101 - 101
1 Jan 2016
Okamoto S Mizu-uchi H Okazaki K Hamai S Tashiro Y Nakahara H Kuwashima U
Full Access

Introduction

Radiographs and computed tomography (CT) images are used for the preoperative planning in total knee arthroplasty (TKA), however, these two-dimensional (2D) measurements are affected easily by limb position and scanning direction relative to three-dimensional (3D) bone model analyses. The purpose of our study was to compare these measurements to evaluate the factors affecting the difference.

Patients and Methods

A total of 75 osteoarthritis knees before primary TKA were assessed. The full-length weight-bearing anteroposterior radiograph and CT slices were used for the 2D measurement. Three-dimensional measurement used 3D bone model reconstructed from the CT data and the coordinate system as the previous reports (Figure 1). We measured FVA (femoral valgus angle), CRA (the angle between the posterior condylar line <PC-L> and the clinical epicondylar axis <CEA>), and SRA (the angle between the PC-L and the surgical epicondylar axis <SEA>). Intra- and inter-observer reliabilities were assessed by intraclass correlation coefficients (ICC), and the differences between the 2D and the 3D measurements (Differences) were evaluated. In addition, we evaluated whether preoperative factors (preoperative extension angle, HKA, BMI and CT scanning direction) affected the differences between the 3D and the 2D measurements. Computer simulation was used to examine the influences of CT scanning direction.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 56 - 61
1 Jan 2012
Kawahara S Matsuda S Fukagawa S Mitsuyasu H Nakahara H Higaki H Shimoto T Iwamoto Y

In posterior stabilised total knee replacement (TKR) a larger femoral component is sometimes selected to manage the increased flexion gap caused by resection of the posterior cruciate ligament. However, concerns remain regarding the adverse effect of the increased anteroposterior dimensions of the femoral component on the patellofemoral (PF) joint. Meanwhile, the gender-specific femoral component has a narrower and thinner anterior flange and is expected to reduce the PF contact force. PF contact forces were measured at 90°, 120°, 130° and 140° of flexion using the NexGen Legacy Posterior Stabilized (LPS)-Flex Fixed Bearing Knee system using Standard, Upsized and Gender femoral components during TKR. Increasing the size of the femoral component significantly increased mean PF forces at 120°, 130° and 140° of flexion (p = 0.005, p < 0.001 and p < 0.001, respectively). No difference was found in contact force between the Gender and the Standard components. Among the patients who had overhang of the Standard component, mean contact forces with the Gender component were slightly lower than those of the Standard component, but no statistical difference was found at 90°, 120°, 130° or 140° of flexion (p = 0.689, 0.615, 0.253 and 0.248, respectively).

Upsized femoral components would increase PF forces in deep knee flexion. Gender-specific implants would not reduce PF forces.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1210 - 1216
1 Sep 2011
Mitsuyasu H Matsuda S Fukagawa S Okazaki K Tashiro Y Kawahara S Nakahara H Iwamoto Y

We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior condyles was also evaluated. The results showed that placement of the femoral component significantly reduced the medial and lateral extension gaps by means of 1.0 mm and 0.9 mm, respectively (p < 0.0001). The extension gap was reduced when a larger femoral component was selected relative to the thickness of the resected posterior condyle. When the post-operative posterior lateral condyle was larger than that pre-operatively, 17 of 41 knees (41%) showed a decrease in the extension gap of > 2.0 mm. When a specially made femoral trial component with a posterior condyle enlarged by 4 mm was tested, the medial and lateral extension gaps decreased further by means of 2.1 mm and 2.8 mm, respectively.

If the thickness of the posterior condyle is expected to be larger than that pre-operatively, it should be recognised that the extension gap is likely to be altered. This should be taken into consideration when preparing the extension gap.