Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims

We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement.

Methods

Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 36 - 36
1 Oct 2019
Muratoglu OK Gil D Atici A Connolly R Hugard S Oral E
Full Access

Introduction

Infection remains as one of the major challenges of total joint surgery. One-stage irrigation, debridement and reimplantation, or two-stage revision surgery with a temporary implantation of antibiotic eluting bone cement spacer followed by reimplantation are two methods often used to treat infected patients with mixed outcomes. Like bone cement, ultra-high molecular weight polyethylene (UHMWPE) can also be used as a carrier for antibiotics. Recently, we demonstrated that vancomycin and rifampin can be delivered from UHMWPE implants at therapeutic levels to eradicate Staphylococcus aureus biofilm in a lupine animal model. There are regulatory challenges in translating these types of combination devices to clinical use. Last year, at this meeting, we presented the preliminary pre-clinical testing for a temporary UHMWPE spacer containing gentamicin sulfate as a first step towards clinical use. Since then, we carried out a survey among the Knee Society membership about their preference for spacer use in two-stage revision surgery and found that 43% prefer to use a CoCr femoral component on an all-poly cemented tibial insert, 22% prefer bone cement spacers molded in the OR, 20% prefer static bone cement spacers, and 14% prefer pre-formed bone cement spacers. We modified our implant design based on the majority's preference for a total knee system, rather than bone cement spacers, in the temporary two-stage approach. In this study, we explored the effect of gentamicin sulfate (GS) elution from UHMWPE/GS tibial inserts on bacterial colonization on CoCr surfaces.

Methods

We characterized the gentamicin sulfate (GS) particles with scanning electron microscopy (SEM). We molded UHMWPE/GS powder blends and characterized the morphology using SEM and Energy Dispersive X-Ray Spectroscopy (EDS). We submerged samples of molded UHMWPE/GS in buffered phosphate solution (PBS) at 37°C and quantified the extent of GS elution into PBS with a method described by Gubernator et al. using o-phthaladehyde (OPA) [1]. Under basic conditions, OPA reacts with primary amino groups to form fluorescent complexes. Since gentamicin is the only source of such amino acids in our elution samples, the number of fluorescent complexes formed is directly proportional to the amount of gentamicin in the sample. Using this method, we could quantify gentamicin elution by measuring sample fluorescence post OPA-reaction. We used a plate reader to excite the fluorescent complexes formed in the OPA reaction and measured the resulting emission at wavelengths of 340 nm and 455 nm, respectively. We also quantified the effect of the standard cleaning protocol (heated sonication in alkaline water and alcohol) used to clean UHMWPE implants on subsequent GS elution from UHMWPE/GS samples using the OPA method. We used agar diffusion tests to characterize antibacterial properties of UHMWPE/GS samples after cleaning. For these tests, we collected eluents collected from UHMWPE/GS and gentamicin-impregnated bone cement (BC/GS) following 1, 2, 3, and 4 weeks of elution, and tested against S. aureus (ATCC 12600). We used the “daughter cells” method developed by Bechert et al. to assess anticolonizing properties of UHMWPE/GS [2,3]. We also characterized the colonization of bacteria on CoCr surfaces in the presence of GS eluting from UHMWPE/GS test samples. For this we modified a Pin-on-Disc (PoD) wear tester: An UHMWPE/GS pin and UHMWPE pin (control) articulated against an implant-finish CoCr disc with Tryptic Soy Broth containing S. Aureus as the lubricant. After 18 hrs, we rinsed the articular surfaces of the pin and disc and stamped them onto Agar gel to transfer any adherent bacteria. We incubated the Agar plate overnight such that adherent bacteria proliferated and became visible.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 60 - 60
1 Oct 2018
Muratoglu OK Oral E Gil D Atici A Connolly R
Full Access

Infection remains as one of the major challenges of total joint surgery. One-stage irrigation, debridement and reimplantation or two-stage revision surgery with a temporary implantation of antibiotic eluting bone cement spacer followed by reimplantation are two methods often used to treat infected patients with mixed outcomes. Like bone cement, ultra-high molecular weight polyethylene (UHMWPE) can also be used as a carrier for antibiotics. Recently, we demonstrated that vancomycin and rifampin can be successfully delivered from UHMWPE implants at therapeutic levels to eradicate Staphylococcus aureus biofilm in a lupine animal model. There are regulatory challenges in translating these types of combination devices in to clinical use. One approach is to follow a stepwise strategy, with the first step of seeking clearance for a temporary UHMWPE spacer containing gentamicin sulfate. In this study, we explored the effect of gentamicin sulfate (GS) content in UHMWPE on GS elution rate and antimicrobial activity against methicillin-sensitive S. aureus(MSSA). We also assessed the effect of spacer fabrication on the activity of gentamicin sulfate.

We prepared and consolidated UHMWPE/GS blends in varying concentrations. After consolidation, we fabricated test samples with surface area (350mm2) to volume (300mm3) ratio of 1.2 for elution in 1.5ml phosphate buffered saline at body temperature for up to six months and quantified eluted GS content using liquid chromatography – mass spectrometry (LCMS). We assessed the antibacterial activity of the obtained samples in vitro against various concentrations of MSSA (103–106 CFU/ml). Furthermore, we quantified the probability of bacterial colonization of UHMWPE impregnated with GS compared to GS containing bone cement. We assessed any detectable changes in activity of eluted GS caused by spacer fabrication by screening m/z peaks of GS isomers in mass spectra obtained from LC-MS.

Gentamicin sulfate activity was not compromised by the elevated temperature and pressure used during spacer fabrication. Elution rate of GS increased with increasing GS content in the blends studied. At comparable elution rates, the GS-loaded UHMWPE was either equivalent or better in terms of antibacterial and anticolonization properties when compared with gentamicin containing bone cement. GS-impregnated UHMWPE is a promising material for temporary spacers.