The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other.Aims
Methods
The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft- tissue gap balance in varus knees undergoing total knee arthroplasty (TKA). Limb deformity in coronal (varus) and sagittal (flexion) planes, medial and lateral gap distances in maximum knee extension and 90° knee flexion and maximum knee flexion were recorded before and after excision of medial femoral and tibial osteophytes using computer navigation in 164 patients who underwent 221 computer-assisted, cemented, cruciate- substituting TKAs.Aims
Patients and Methods
The aims of this retrospective study were to determine the incidence of extra-articular deformities (EADs), and determine their effect on postoperative alignment in knees undergoing mobile-bearing, medial unicompartmental knee arthroplasty (UKA). Limb mechanical alignment (hip-knee-ankle angle), coronal bowing of the femoral shaft and proximal tibia vara or medial proximal tibial angle (MPTA) were measured on standing, full-length hip-to-ankle radiographs of 162 patients who underwent 200 mobile-bearing, medial UKAsAims
Patients and Methods
The extent of soft-tissue release and the exact structures that need to be released to correct deformity and balance the knee has been a controversial subject in primary total knee arthroplasty. Asian patients often present late and consequently may have profound deformities due to significant bone loss and contractures on the concave side, and stretching of the collateral ligament on the convex side. Extra-articular deformities may aggravate the situation further and make correction of these deformities and restoration of ‘balance’ more arduous. These considerations do not apply if a hinged prosthesis is used, as may be warranted in an elderly, low-demand patient. However, in active, younger patients, it may be best to avoid use of excess constraint by balancing the soft-tissues and using the least constrained implant. Releasing collateral ligaments during TKA has unintended consequences such as the creation of significant mediolateral instability and a flexion gap which exceeds the extension gap; both of these may require a constrained prosthesis to achieve stability. We will show that soft-tissue balance can be achieved even in cases of severe varus, valgus, flexion and hyperextension deformities without collateral ligament release. The steps are: 1) Determining pre-operatively whether deformity is predominantly intra-articular or extra-articular, 2) Individualizing the valgus resection angle and bony resection depth, 3) Meticulous removal of osteophytes, 4) Reduction osteotomy, posteromedial capsule resection, sliding medial or lateral condylar osteotomy, extra-articular corrective osteotomy, 5) Compensating for bone loss, 6)Only rarely deploying a more constrained device. Case examples will be presented to illustrate the entire spectrum of varus deformities.
Protrusio acetabuli can be either primary or secondary. Primary or idiopathic protrusio is a rare condition of unknown etiology. Secondary protrusio may be associated with rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteomalacia, trauma and Paget's disease. Challenges in surgery include: lack of bone stock, deficient medial support to the cup, difficulty in dislocating the femoral head, and medialization of the hip joint center. Several surgical techniques have been described: use of cement alone without bone graft; morselised impacted autograft or allograft with a cemented cup; metal cages, reinforcement rings, and solid grafts. We describe our technique of impaction grafting using autologous bone and a cementless porous-coated hemispherical cup without the use of acetabular rings or cages in patients with an average age of 46 years. Protrusion was graded depending on distance of medial wall from Kohler's line as mild (1–5 mm medial), moderate (6–15 mm medial) and severe if it was more than 15 mm medial to the Kohler's line. All patients were operated in the lateral position using a modified Hardinge's anterolateral approach. Adductor tenotomy may be required in cases of severely stiff hips. After careful dislocation of the femoral head, it was sectioned in situ into slivers to facilitate obtaining the graft. The periphery was reamed and care was taken to preserve the membrane lining the floor of the defect. Morselised graft was impacted with hemispherical impactors and the trial cup 1–2 mm larger than the last reamer placed in the desired position. The final socket was then inserted. Femoral preparation was performed in routine fashion. The mean pre-operative Harris Hip Score of 52 improved to 85 points at a mean follow up of 4 years. The average acetabular inclination angle was 42 degrees. Our results have shown incorporation of the graft in all cases. There was no evidence of progression of the protrusio or cup loosening in any of the cases. Thus far, our hips have not shown osteolytic lesions. The technique described is a satisfactory biological solution of restoring bone stock particularly in young and middle-aged patients.
Since 2005, the author has performed nearly 1000 Oxford medial unicompartmental arthroplasties (UKA) using a mobile bearing. The indications are 1) Isolated medial compartment osteoarthritis with ‘bone-on-bone’ contact, which has failed prior conservative treatment, 2) Medial femoral condyle avascular necrosis or spontaneous osteonecrosis, which has failed prior conservative treatment. Patients are recommended for UKA only if the following anatomic requirements are met: 1) Intact ACL, 2) Full thickness articular cartilage wear limited to the anterior half of the medial tibial plateau, 3) Unaffected lateral compartment cartilage, 4) Unaffected patellar cartilage on the lateral facet, 5) Less than 10 degrees of flexion deformity, 6) Over 100 degrees of knee flexion, and 7) Varus deformity not exceeding 15 degrees. Exclusion criteria for surgery are BMI of more than 30, prior high tibial osteotomy, and inflammatory arthritis. All cases were performed with a tourniquet inflated using a minimally-invasive incision with a quadriceps-sparing approach. Both femoral and tibial components were cemented. Most patients were discharged home the next morning; bilaterals usually stayed a day longer. We have previously described our results and the factors determining alignment. In a more recent study, we have compared the coronal post-operative limb alignment and knee joint line obliquity after medial UKA with a clinically and radiologically (less than Grade 2 medial OA) normal contralateral lower limb. In our series, we have had 1 revision for aseptic loosening of both components, conversion to TKRs in a patient with bilateral UKAs who developed rheumatoid arthritis 3 years later, and 9 meniscal dislocations. There have been no cases of wound infections and thromboembolism. We have reviewed our patients with a minimum 10-year follow-up which will be presented. The vast majority of our patients have been generally very satisfied with the results. Our study shows that most patients (who have no disease in the contralateral knee) regain their ‘natural’ alignment and joint line obliquity comparable to their contralateral limb. Over the past few years our percentage of UKAs has been steadily rising to about a third of our knee cases. UKA serves as a definitive procedure in the elderly. We see it as a suitable procedure in middle-aged patients who want an operation that provides a quick recovery, full function and range of motion, and near-normal kinematics, with the understanding that they have a small chance of conversion to a total knee arthroplasty in the future.
Lavage and preparation of the cancellous bony surface can facilitate adequate fixation of components in cemented total knee arthroplasty (TKA). Commonly used techniques for bone preparation such as pulse lavage, apart from adding to the cost, may cause local loss of loose cancellous bone and may even drive contaminants deeper into the tissue when used during TKA. We describe a simple, inexpensive and effective tool of using a sterilised toothbrush for preparing bone surface during cemented TKA. This must be followed by adequate pressurization of cement at the right time to achieve close interdigitation of cement with trabecular bone.
Soft-tissue release plays an integral part in primary total knee arthroplasty by ‘balancing’ the knee. Asian patients often present late and consequently may have large deformities due to significant bone loss and contractures medially, and stretching of the lateral collateral ligament. Extra-articular deformities may aggravate the situation further and make correction of these deformities more arduous. Several techniques have been described for correction of deformity by soft-tissue releases. However, releasing the collateral ligament during TKA has unintended consequences such as the creation of significant mediolateral instability and a flexion gap which exceeds the extension gap; both of these may require a constrained prosthesis to achieve stability. We will show that soft-tissue balance can be achieved even in cases of severe varus deformity without performing a superficial medial collateral ligament release. The steps are: Determining pre-operatively whether deformity is predominantly intra-articular or extra-articular; Individualizing the valgus resection angle and bony resection depth; Reduction osteotomy, posteromedial capsule resection, sliding medial condylar osteotomy, extra-articular corrective osteotomy; Compensating for bone loss; Only rarely deploying a more constrained device. Case examples will be presented to illustrate the entire spectrum of varus deformities.
There is enough evidence to show that navigation improves precision of component placement and consistent and accurate restoration of limb alignment, allowing the surgeon to achieve the desired neutral or kinematic alignment. Computer-assisted TKA provides excellent information regarding gap equality and symmetry throughout the knee range of motion. Accurate soft-tissue balancing is facilitated by CAS. It allows precise, quantitative soft tissue release for deformities, especially in knees with severe flexion contractures and severe rigid varus and valgus deformities. It allows accurate restoration of joint line, and posterior femoral offset. Knee arthritis with complex extra-articular deformities and in-situ hardware can be tackled appropriately using computer navigation where conventional techniques may be inadequate. It also allows intra-articular correction for extra-articular deformities due to malunions and facilitates extra-articular correction in cases with severe extra-articular tibial deformities. In obese patients, where the alignment of the limb is difficult to assess, computer navigation improves accuracy and reduces the number of outliers. The ability to quantify the precise amount of bone cuts and soft tissue releases needed to equalise gaps and restore alignment, reduced blood loss, and reduced incidence of systemic emboli improves the safety of the procedure and hastens functional recovery of the patient. Recent evidence shows that the rate of revision especially in younger patients is reduced with navigation.
The aim of this retrospective study was to measure and determine variation in VCA between the two limbs in a patient with windswept deformity on preoperative full-length, standing, hip-to-ankle radiographs. We hypothesised that there will be significant difference in VCA between the two limbs of a patient with arthritic windswept deformity and therefore it is necessary to individualise VCA for each limb preoperatively on full-length radiographs during TKA. In this retrospective study, femoral valgus correction angle (VCA) measured on full-length, hip-to-ankle, standing radiographs was compared between the varus and the valgus limbs in 63 patients with windswept deformities who underwent TKA.Aims
Patients and Methods
Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA. In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients.Aims
Patients and Methods
Since 2005, the author has performed 422 Oxford medial unicompartmental arthroplasties (UKA) using a mobile bearing. There were 263 females and 119 males, (40 patients had bilateral UKAs) with a mean age of 62 years. The indications were: Isolated medial compartment osteoarthritis with ‘bone-on-bone’ contact, which had failed prior conservative treatment; Medial femoral condyle avascular necrosis or spontaneous osteonecrosis, which had failed prior conservative treatment. Patients were recommended UKA only if the following anatomic requirements were met: Intact ACL, Full thickness articular cartilage wear limited to the anterior half of the medial tibial plateau, Unaffected lateral compartment cartilage, Unaffected patellar cartilage on the lateral facet, Less than 10 degrees of flexion deformity, Over 100 degrees of knee flexion, Varus deformity not exceeding 15 degrees. Exclusion criteria for surgery were BMI of more than 30, prior high tibial osteotomy, and inflammatory arthritis. All cases were performed with a tourniquet inflated using a minimally-invasive incision with a quadriceps-sparing approach. Both femoral and tibial components were cemented. Rehabilitation consisted of teaching the patients 6 exercises to regain strength and range of motion, and weight-bearing as tolerated with a cane began from the evening of surgery. Most patients were discharged home the next morning; bilaterals usually stayed a day longer. We have previously described our results and the factors determining alignment. In a more recent study we have compared the coronal postoperative limb alignment and knee joint line obliquity after medial UKA with a clinically and radiologically (less than Grade 2 medial OA) normal contralateral lower limb. In our series of 423 cases, we have had 1 revision for aseptic loosening of both components, and 4 meniscal dislocations. There have been no cases of wound infections and thromboembolism. We are currently undertaking a review of the 2–10 year follow-up of our cases. The vast majority of our patients have been generally very satisfied with the results. Our study shows that most patients (who have no disease in the contralateral knee) regain their ‘natural’ alignment and joint line obliquity comparable to their contralateral limb. Over the past few years our percentage of UKAs has been steadily rising. UKA serves as a definitive procedure in the elderly. We see it as a suitable procedure in middle-aged patients who want an operation that provides a quick recovery, full function and range of motion, and near-normal kinematics, with the understanding that they have a small chance of conversion to a total knee arthroplasty in the future.
Soft-tissue release plays an integral part in primary total knee arthroplasty by ‘balancing’ the knee. Asian patients often present late and consequently may have large deformities due to significant bone loss and contractures medially, and stretching of the lateral collateral ligament. Extra-articular deformities may aggravate the situation further and make correction of these deformities more arduous. Several techniques have been described for correction of deformity by soft-tissue releases. However, releasing the collateral ligament during TKA has unintended consequences such as the creation of significant mediolateral instability and a flexion gap which exceeds the extension gap; both of these may require a constrained prosthesis to achieve stability. We will show that soft-tissue balance can be achieved even in cases of severe varus deformity without performing a superficial medial collateral ligament release. The steps are: 1. Determining preoperatively whether deformity is predominantly intra-articular or extra-articular; 2. Individualizing the valgus resection angle and bony resection depth; 3. Reduction osteotomy, posteromedial capsule resection, sliding medial condylar osteotomy, extra-articular corrective osteotomy; 4. Compensating for bone loss; 5. Only rarely deploying a more constrained device. Case examples will be presented to illustrate the entire spectrum of varus deformities.
Lavage and preparation of the cancellous bony surface can facilitate adequate fixation of components in cemented total knee arthroplasty (TKA). Commonly used techniques for bone preparation such as pulse lavage, apart from adding to the cost, may cause local loss of loose cancellous bone and may even drive contaminants deeper into the tissue when used during TKA. We describe a simple, inexpensive and effective tool of using a sterilised toothbrush for preparing bone surface during cemented TKA. This must be followed by adequate pressurization of cement at the right time to achieve close interdigitation of cement with trabecular bone.
During TKA, a surgeon has 4 options: not to use a tourniquet at all, use it from incision to closure, from incision until cementing, and only during cementing. The potential advantages of using a tourniquet are: to reduce blood loss, to have a clear operative field, to facilitate preparation of bony surfaces that are optimal for cementation and longevity of fixation of implants, and to reduce the potential for blood-borne disease transmission through needlestick injuries. Potential disadvantages of tourniquet use have been outlined by the previous speaker. In particular, using a tourniquet from incision until closure has several disadvantages and is generally not a preferred option. While this paper opposes tourniquetless TKA, it supports using a tourniquet from incision until cementing. We will present in support the findings of our prospective, randomised, double-blind study in patients undergoing cemented, navigated, bilateral simultaneous TKA wherein a tourniquet was used from incision until cementing was complete on one side and compared with the other knee in which a tourniquet was used only during cementing. We compared knee pain, thigh pain, blood loss, hemodynamic changes, functional outcome and complications. We concluded that total knee arthroplasty can be safely and effectively performed with the use of the tourniquet from skin incision until cementing without adverse effects.
Deformity can be associated with significant bone loss, ligament laxity, soft-tissue contractures, distortion of long bone morphology, and extra-articular deformity. Correction of varus, valgus, or flexion deformity requires soft tissue releases in conjunction with bone cuts perpendicular to the long axes of the femur and tibia. Cruciate-retaining or -substituting implants can be used based on surgeon preference if the ligaments are well balanced. However, in presence of severe deformity, additional measures may be warranted to achieve alignment and balance. TKA then becomes a more challenging proposition and may require the surgeon to perform extensive releases, adjunct osteotomies and deploy more constrained implants. Merely enhancing constraint in the implant however without attending to releases and extra-articular correction may not suffice. Certain myths in deformity correction will be presented. Technical tips with regard to preoperative planning, i.e., whether intra-articular correction alone will suffice or extra-articular correction is required, will be highlighted. Surgical principles and methods of performing large releases, reduction osteotomy, lateral epicondylar sliding osteotomy, sliding medial condylar osteotomy, and closed wedge diaphyseal/metaphyseal osteotomy concomitantly with TKA will be illustrated with examples. Technique of performing TKA with concomitant extra-articular deformity resulting from coronal bowing of femoral or tibial diaphysis, malunited fractures, prior osteotomies, and stress fractures will be presented. The techniques reported can successfully restore alignment, pain-free motion, and stability without necessarily using more constrained implants.
Stems may improve fixation and stability of components
during revision total knee replacement. However, the choice between
cemented and cementless stems is not a clear one. Cemented stems
offer several advantages in terms of versatility, mechanical stability, surgical
technique and clinical outcome over their cementless counterpart. Cite this article:
Whether cemented or cementless fixation is superior in TKA is a controversial issue. There are few high quality papers assessing the merits and demerits of cementless and cemented fixation and these will be highlighted. Roentgen stereophotogrammetric analysis (RSA) is an important tool to determine early loosening of components after TKA. There is a high correlation between loosening and early migration of implants seen in the first 2 years after surgery. Hence it is a valuable tool to determine the likelihood of failure in studies with short follow up. Meta-analyses that include papers using RSA are therefore the most valuable and these will be summarised. In view of the fact that the majority of patients undergoing TKA worldwide are low-demand and elderly persons, in view of the higher cost associated with cementless knees, and the equivalence or superiority of results of cemented TKAs with regards to clinical outcomes and survival in the intermediate term, cemented TKA remains the gold standard in the medium term.
Deformity can be associated with significant bone loss, ligament laxity, soft-tissue contractures, distortion of long bone morphology, and extra-articular deformity. Correction of varus, valgus, or flexion deformity requires soft tissue releases in conjunction with bone cuts perpendicular to the long axes of the femur and tibia. Cruciate-retaining or -substituting implants can be used based on surgeon preference if the ligaments are well balanced. However, in presence of severe deformity, additional measures may be warranted to achieve alignment and balance. TKA then becomes a more challenging proposition and may require the surgeon to perform extensive releases, adjunct osteotomies and deploy more constrained implants. Merely enhancing constraint in the implant, however, without attending to releases and extra-articular correction may not suffice. Pre-operative planning, i.e., whether intra-articular correction alone will suffice or extra-articular correction is required, will be highlighted. Surgical principles and methods of performing large releases, reduction osteotomy, lateral epicondylar sliding osteotomy, sliding medial condylar osteotomy, and closed wedge diaphyseal/metaphyseal osteotomy concomitantly with TKA will be illustrated with examples. Results of a large series of TKA with extra-articular deformity resulting from coronal bowing of femoral or tibial diaphysis, malunited fractures, prior osteotomies, and stress fractures will be presented. The techniques reported can successfully restore alignment, pain-free motion, and stability without necessarily using more constrained implants.
Lavage and preparation of cancellous bone surface is essential to ensure adequate fixation of components in cemented total knee arthroplasty (TKA). Commonly used techniques for bone preparation such as pulse lavage, apart from adding to the cost, may cause local loss of loose cancellous bone and may even drive contaminants deeper into the tissue when used during TKA. We describe a simple, inexpensive and effective tool of using a sterilised toothbrush for preparing bone surface during cemented TKA.