Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 32 - 32
1 Mar 2017
Bas M Moya-Angeler J Cooper J Hepinstall M Scuderi G Rodriguez J
Full Access

Introduction

Stiffness after total knee arthroplasty (TKA) has been reported to occur due to component malpositioning and/or oversizing, improper femoral component (FC) flexion and tibial component (TC) slope, tight extension gap, inaccurate joint line placement, deficient posterior osteophyte resection, heterotopic ossification (HO), poor patellofemoral joint reconstruction, poor posterior condylar offset restoration, and/or posterior cruciate ligament (PCL) under-resection or retraction. However, the importance of these potential factors for stiffness are not well documented in the medical literature. The aim of this study was therefore to evaluate specific radiographic parameters in patients who had stiffness after primary TKA.

Material and Methods

An IRB-approved retrospective chart review was performed to identify patients that were revised due to stiffness after TKA. We defined stiffness as 15º or more of flexion contraction, less than 75º of flexion or a range of motion (ROM) of 90º with the chief complaint of limited ROM and pain. Patients with history of previous revisions and/or ORIF, infection, or isolated polyethylene exchange were excluded. Patients with a minimum of 1 year radiographic follow-up were included. Radiographic measurements were performed as described by the Knee Society TKA Roentgenographic Evaluation System (KSRES). Two blinded observers performed all measurements. Descriptive data is reported as mean (range). Inter-observer correlations were reported using Intraclass correlations coefficient (ICC).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 31 - 31
1 Mar 2017
Moya-Angeler J Bas M Cooper J Hepinstall M Rodriguez J Scuderi G
Full Access

Introduction

A stiff total knee arthroplasty (TKA) is an uncommon but disabling problem because it causes pain and limited function. Revision surgery has been reported as a satisfactory treatment option for stiffness with modest benefits. The aim of this study was to evaluate the results of revision surgery for the treatment of stiffness after TKA.

Methods

We defined stiffness as 15 degrees or more of flexion contracture or less than 75º of flexion or a range of motion of 90º or less presenting with a chief complain of limited range of motion and pain. We evaluated the results of forty-two revisions performed by one of four orthopedic surgeons due to stiffness after TKA. Patients with history of infection or isolated polyethylene insert exchange were excluded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 78 - 78
1 Feb 2017
Cooper J Moya-Angeler J Hepinstall M Scuderi G Rodriguez J
Full Access

Introduction

Symptomatic instability following total knee arthroplasty (TKA) is a leading cause of early failure. Despite numerous reports on instability, standardized diagnostic and treatment protocols for these patients continue to remain unclear. Most reports recommend component revision as the preferred treatment, because of poor outcomes and high failure rates associated with isolated tibial polyethylene insert exchange (ITPIE). However, modern implant systems and standardized protocols may potentially change this teaching.

Methods

We performed an IRB-approved, retrospective review of 90 consecutive patients with minimum 2 years follow-up who underwent revision TKA for instability by one of four arthroplasty surgeons at a single institution. Mean age was 62.0 years (range, 41 to 83 years), and 73% of patients were women. Charts were reviewed for relevant preoperative clinical and physical exam findings, as well as pertinent intraoperative findings. Radiographs were analyzed for femoral and tibial component positioning. Pre- and post-operative Knee Society Scores (KSS) were calculated.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 117 - 118
1 May 2011
Moya-Angeler J De Albornoz PM Arroyo J Lopez G Forriol F
Full Access

Introduction: Anterior cruciate ligament (ACL) rupture leads to biomechanics disturbances of the knee joint which are reflected also in the plantar supports. Our hypothesis is that a redistribution of the sole bilateral charges will be produced to allows the feet to get a new control system to compensate ACL rupture. The aim of this research is to study the plantar support pressures disturbances in patients with ACL rupture before operation.

Material and Methods: We analyzed the plantar pressure distribution in two populations: Group A: 39 males of 37 years average age (21–49 y.o), previous surgery of isolated ACL rupture, excluding patients with meniscal tear or serious cartilage damage, contralateral lesions and knee previous surgery as well. Group B (control group): 37 healthy males of 31 years average age (21–40 y.o) without any musculoskeletal disorders.

We performed physical examination and walking through a pedography plate (Emed, Novel Munich, Germany). We studied global plantar support (pressure, forces and areas) of each foot and also divided each foot into six parts. Data obtained was compared between group A, patients (healthy leg and ACL rupture leg) and group B (control group). Statistical analysis was performed with a non-parametric Wilcoxon test.

Results: Group A (healthy leg and ACL rupture leg) total support area of both feet were statistically superior than Group B total support area (p< 0,019 and p< 0,005 respectively). Evenly midfoot total support area was superior in Group A that in Group B, as well as midfoot force support (p< 0.089).

Group A midfoot pressure was higher in ACL rupture leg than in healthy leg (p< 0.007) and it was also higher to the one obtained for group B (p< 0.046). Evenly the anterior-external region of Group A, healthy leg got the highest pressure (p< 0.076), followed by Group A, ACL rupture leg (p< 0.022) and finally Group B.

Group B anterior-internal pressure was statistically superior to Group A, ACL rupture leg (p< 0.049) followed by Group A, healthy leg (p=0.022). During foot takeoff, first toe pressures were higher in Group B compared to Group A (p< 0.076).

Conclusion: ACL rupture shows differences in plantar support pressures distribution of both legs (ACL rupture leg and healthy leg) compared with a control population. The injured leg seeks balance decreasing heel support and increasing the contact surfaces between floor, midfoot and forefoot.