Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 468 - 468
1 Dec 2013
Morison Z Olsen M Donnolly M Blankstein M Schemitsch E
Full Access

The purpose of this study was to examine the utility of the acetabular component introducer as a tool to intra-operatively predict implant inclination in total hip arthroplasty. This study investigated (1) the correlation between intra-operative photographic assessment of cup inclination using the acetabular introducer and that measured on post-operative radiograph; and (2) the accuracy of intra-operative prediction of abduction angle.

For this study, we prospectively recruited 56 patients scheduled to receive primary hip arthroplasty from one of two senior surgeons. During the procedure, the lead surgeon provided a prediction of the abduction angle based on the alignment of the impactor attached to the cup in its final seated position. A standardized anteroposterior (AP) photograph was then taken of the acetabular impactor in situ. Abduction angles were measured by two observers on the photographs and post-operative AP pelvis radiographs. Linear regression was used to determine the correlation between the angle of the guide measured on the photographs and the actual position of the implant measured on the radiograph. Descriptive statistics were further used to analyze the accuracy of the intra-operative prediction as compared with the abduction angle measured on the photographs.

Measurements of cup position made from post-operative radiographs were significantly correlated with the measurements as assessed by intra-operative photographs (r = 0.34, p = 0.00). Our findings demonstrate that radiological abduction angles tend to be greater than that assessed by intra-operative photographs by a mean of 5.6 degrees (SD = 6.6 degrees; 95% CI = 7.3 to 3.9 degrees). Conversely, surgeon prediction of cup inclination based on the acetabular introducer differed from the radiographic measurements by a mean of 6.8 degrees (SD = 8.7 degrees). There was good agreement between the two observers in both photographic and radiographic measurement (k = 0.95, k = 0.96, respectively).

In conclusion, we found that the intra-operative photographic assessment of acetabular cup inclination by acetabular impactor alignment tends to underestimate the abduction angle by a mean of approximately 5 degrees. In addition, intra-operative surgeon estimation of acetabular inclination did not appear accurate in this study demonstrating that cup position should rely on additional visual cues beyond that captured in the anteroposterior view of the cup introducer.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 467 - 467
1 Dec 2013
Morison Z Olsen M Mehra A Schemitsch E
Full Access

Purpose:

The use of computer navigation has been shown to improve the accuracy of femoral component placement compared to conventional instrumentation in hip resurfacing. Whether exposure to computer navigation improves accuracy when the procedure is subsequently performed with conventional instrumentation without navigation has not been explored. We examinedwhether femoral component alignment utilizing a conventional jig improves following experience with the use of imageless computer navigation for hip resurfacing.

Methods:

Between December 2004 and December 2008, 213 consecutive hip resurfacings were performed by a single surgeon. The first 17 (Cohort 1) and the last 9 (Cohort 2) hip resurfacings were performed using a conventional guidewire alignment jig. In 187 cases the femoral component was implanted using the imageless computer navigation. Cohorts 1 and 2 were compared for femoral component alignment accuracy.


Bone & Joint Research
Vol. 1, Issue 9 | Pages 205 - 209
1 Sep 2012
Atrey A Morison Z Tosounidis T Tunggal J Waddell JP

We systematically reviewed the published literature on the complications of closing wedge high tibial osteotomy for the treatment of unicompartmental osteoarthritis of the knee. Publications were identified using the Cochrane Library, MEDLINE, EMBASE and CINAHL databases up to February 2012. We assessed randomised (RCTs), controlled group clinical (CCTs) trials, case series in publications associated with closing wedge osteotomy of the tibia in patients with osteoarthritis of the knee and finally a Cochrane review. Many of these trials included comparative studies (opening wedge versus closing wedge) and there was heterogeneity in the studies that prevented pooling of the results.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 163 - 163
1 Sep 2012
Kuzyk PR Sellan M Morison Z Waddell JP Schemitsch EH
Full Access

Purpose

Femoroacetabular impingement (FAI) may contribute to the development of early onset hip osteoarthritis (OA). A cam lesion (or pistol grip deformity) of the proximal femur reduces head-neck offset resulting in cam type FAI. The alpha angle is a radiographic measurement recommended for diagnosis of cam type FAI. The purpose of this study was to determine if patients that develop end stage hip OA prior to 55 years of age have radiographic evidence of cam type FAI.

Method

The anteroposterior (AP) pelvis and lateral hip radiographs of 244 patients (261 hips) who presented to our institution for hip arthroplasty or hip fracture fixation between 2006 and 2008 were retrospectively reviewed. Three cohorts were compared: 1) patients with end stage hip OA < 55 years old (N=76); 2) patients with end stage hip OA > 55 years old (N=84); 3) hip fracture patients > 65 years old without radiographic evidence of hip arthritis were used as controls (N=101). Patients with inflammatory arthritis, avascular necrosis and post-traumatic hip OA were excluded. Alpha angles were measured on the AP pelvis and lateral radiographs by three coauthors using ImageJ 1.43 software (National Institutes of Health, USA). For patients with end stage hip OA, AP alpha angles were measured on both the hip with OA and the contralateral hip. Lateral alpha angles were measured only on the hip with OA. For patients with hip fracture, AP alpha angles were measured on the non-fractured hip and lateral alpha angles were measured on the fractured hip. A one-way ANOVA with post hoc Tukeys HSD test was used to compare the AP and lateral alpha angles for the three cohorts.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 401 - 401
1 Nov 2011
Higgins G Morison Z Olsen M Schemitsch E
Full Access

Surgeons performing hip resurfacing ante-vert and translate the femoral component anterior to maximize head/neck offset and educe impingement. The anterior femoral neck is under tensile forces during gait similarly to the superior neck [6]. This study was esigned to determine the risk of femoral neck fracture after anterior or posterior notching of the femoral neck.

Method: Fortyseven 4th generation synthetic femora were implanted with Birmingham Hip Resurfacing pros-theses (Smith & Nephew Inc. emphis, USA). Implant preparation was performed using imageless computer navigation (VectorVision SR 1.0, BrainLAB, Grmany). The virtual prosthesis was initially planned for neutral version and translated anterior, or posterior, to create the notch. The femora were fixed in a single-leg stance and tested with axial compression using a mechanical testing machine. This method enabled comparison with previously published data. The synthetic femora were prepared in 8 experimental groups:2mm and 5mm anterior notches, 2mm and 5mm posterior notches, neutral alignment with no notching (control), 5mm superior notch, 5mm anterior notch tested with the femur in 25° flexion and 5mm posterior notch tested with the femur in 25° extension We tested the femora flexed at 25° flex-ion to simulate loading as seen during stair ascent. [3] The posterior 5mm notched femoral necks were tested in extension to simulate sporting activities like running. The results were compared to the control group in neutral alignment using a one-way ANOVA:

Results: Testing Group Mean load to failure Significance Neutral (Control) 4303.09 ± 911.04N Anterior 2mm 3926.62 ± 894.17N p=0.985 Anterior 5mm 3374.64 ± 345.65N p=0.379 Posterior 2mm 4208.09 ± 1079.81N p=1.0 Posterior 5mm 3988.07 ± 728.59N p=0.995 Superior 5mm 2423.07 ± 424.16N p=0.003 Anterior 5mm in 25° flexion 3048.11 ±509.24N p=0.087 Posterior 5mm in 25° extension 3104.61±592.67N p=0.117 Both the anterior 5mm notch tested in single-leg stance and anterior notch in flexion displayed lower compressive loads to failure (3374.64N and 3048.11N). The mean load to failure value for the posterior 5mm notches in extension was 3104.62N compared to 4303.09N for the control group. Our data suggests that anterior and posterior 2mm notches are not statistically significantly weaker in axial compression. The anterior 5mm notches tend towards significance in axial compression (p=0.38) and bordered significance in flexion (p=0.087). The 5mm posterior notches were not significantly weakened in axial compression (p=0.995), but tended towards significance in extension (p=0.117). The 5mm superior notch group was significantly weaker with axial compression supporting previous data published (p=0.003). We are currently assessing offset and other variables that may reduce data spread.

Conclusion: We conclude that anterior and posterior 2mm notching of the femoral neck has no clinical implications, however 5mm anterior notches may lead to fracture. The fracture is more likely to occur with stair ascent rather than normal walking. Posterior 5mm notches are not likely to fracture with normal gait, but may fracture with higher impact activities that promote weight bearing in extension. Hip resurfacing is commonly performed on active patients and ultimately 5mm notching in the anterior or posterior cortices has clinically important implications.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 577 - 577
1 Nov 2011
Morison Z Higgins GA Olsen M Lewis PM Schemitsch EH
Full Access

Purpose: Surgeons performing hip resurfacing antevert and translate the femoral component anteriorly to maximize head/neck offset and reduce impingement. The anterior femoral neck is under tensile forces during gait similarly to the superior neck [6]. This study was designed to determine the risk of femoral neck fracture after anterior or posterior notching of the femoral neck.

Method: Forty seven fourth generation synthetic femora were implanted with Birmingham Hip Resurfacing prostheses (Smith & Nephew Inc. Memphis, USA). Implant preparation was performed using imageless computer navigation (VectorVision SR 1.0, BrainLAB, Germany). The prosthesis was initially planned for neutral version and translated anterior, or posterior, to create a femoral neck notch. The femora were fixed in a single-leg stance and tested with axial compression using a mechanical testing machine. This method enabled comparison with previously published data. The synthetic femora were prepared in eight experimental groups:two mm and five mm anterior notches, two mm and five mm posterior notches, neutral alignment with no notching (control), five mm superior notch, five mm anterior notch tested with the femur in 25° flexion and five mm posterior notch tested with the femur in 25° extension We tested the femora flexed at 25° flexion to simulate loading as seen during stair ascent. [3] The posterior five mm notched femoral necks were tested in extension to simulate sporting activities like running. The results were compared to the control group in neutral alignment using a one – way ANOVA:

Results: Testing Group Mean load to failure Significance (p-value) Anterior 2mm 3926.61 ± 894.17 .843 Anterior 5mm 3374.64 ± 345.65 .155 Neutral (Control) 4539.44 ± 786.44 – Posterior 2mm 4208.09 ± 1079.81 .994 Posterior 5mm 3988.06 ± 728.59 .902 Superior 5mm 2423.07 ± 424.17 .001 Anterior 5mm in 25° flexion 3048.11 ± 509.24 .027 Posterior 5mm in 25° extension 3104.62 ± 592.67 .038 Our data suggests that anterior and posterior two mm or five mm notches are not significantly weaker in axial compression. Anterior and posterior 5mm notches are significantly weaker in flexion/extension (p=0.027/ p=0.038). The five mm superior notch group was significantly weaker with axial compression supporting previous published data (p=0.001).

Conclusion: We conclude that anterior or posterior two mm notching of the femoral neck has no clinical implications, however five mm anterior or posterior femoral neck notching significantly weakens the femoral neck. Fracture is more likely to occur with stair ascent or activities involving weight bearing in extension. Hip resurfacing is commonly performed on active patients and five mm neck notching has clinically important implications.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 180 - 180
1 May 2011
Higgins G Morison Z Olsen M Lewis P Schemitsch E
Full Access

This study was designed to determine the risk of femoral neck fracture after anterior or posterior notching of the femoral neck. The anterior femoral neck is under tensile forces during gait similarly to the superior neck [6].

Method: Fortyseven 4th generation synthetic femora were implanted with Birmingham Hip Resurfacing pros-theses (Smith & Nephew Inc. Memphis, USA). Implant preparation was performed using imageless computer navigation (VectorVision SR 1.0, BrainLAB, Germany). The prosthesis was initially planned for neutral version and translated anterior, or posterior, to create a femoral neck notch. The femora were fixed in a single-leg stance and tested with axial compression. This method enabled comparison with previously published data. The synthetic femora were prepared in 8 experimental groups: 2mm and 5mm anterior notches, 2mm and 5mm posterior notches, neutral alignment with no notching (control), 5mm superior notch, 5mm anterior notch tested with the femur in 25° flexion and 5mm posterior notch tested with the femur in 25° extension

We tested the femora flexed at 25° flexion to simulate loading as seen during stair ascent. [3] The posterior 5mm notched femoral necks were tested in extension to simulate sporting activities like running. The results were compared to the control group in neutral alignment using a one- way ANOVA:

Results: Testing Group Mean load to failure Significance

Neutral (Control) 4303.09 ± 911.04N

Superior 5mm 2423.07 ± 424.16N p=0.003

Anterior 5mm in 25° flexion 3048.11 ±509.24N p=0.087

Posterior 5mm in 25° extension3104.61±592.67N p=0.117

The anterior 5mm notch tested in single-leg stance and anterior notch in flexion displayed lower compressive loads to failure (3374.64N and 3048.11N). The mean load to failure value for the posterior 5mm notches in extension was 3104.62N compared to 4303.09N for the control group.

Our data suggests that anterior and posterior 2mm notches are not significantly weaker in axial compression. The anterior 5mm notches was not significant in axial compression (p=0.38), but trended towards significance in flexion (p=0.087). A 5mm posterior notch was not significant. (p=0.995, p=0.117). The 5mm superior notch group was significantly weaker with axial compression supporting previous published data (p=0.003).

Conclusion: We conclude that anterior and posterior 2mm notching of the femoral neck has no clinical implications, however a 5mm anterior femoral neck notch may lead to fracture. The fracture is more likely to occur with stair ascent rather than normal walking given the reduction in strength noted after testing in flexion. Posterior 5mm notches are not likely to fracture. Hip resurfacing is commonly performed on active patients and 5mm notching of anterior cortex has clinically important implications.