Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability. In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits. This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use.
Antibiotic prophylaxis is critical for the prevention of fracture related infection (FRI) in trauma patients, particularly those with open wounds. Administration of prophylactic antibiotics prior to arrival at the hospital (e.g. by paramedics) may reduce intraoperative bacterial load and has been recommended; however scientific evidence for pre-hospital administration is scarce. The contaminated rabbit humeral osteotomy model of Arens was modified to resemble the sequence of events in open fractures. In an initial surgery representing the “accident”, a 2mm mid-diaphyseal hole was created in the humerus and the wound was contaminated with a clinical Aim
Methods
The treatment of chronic orthopedic device-related infection (ODRI) often requires multiple surgeries and prolonged antibiotic therapy. In a two-stage exchange procedure, the treatment protocol includes device removal and placement of an antibiotic-loaded bone cement spacer to achieve high local antibiotic concentrations. At the second stage, further surgery is required to remove the spacer and replace it with the definitive device. We have recently developed a thermo-responsive hyaluronan hydrogel (THH) that may be loaded with antibiotics and used as delivery system. Since the material is bio-resorbable, it does not require surgical removal and may therefore be suitable for use as treatment strategy in a single-stage exchange. This aim of this study was to evaluate gentamicin sulphate (Genta)-loaded THH (THH-Genta) for treating a chronic Twelve Swiss-alpine sheep received an IM tibia nail and an inoculation of a gentamicin-sensitive clinical strain of Aim
Methods
One of the most challenging complications in orthopedic trauma surgery is the development of infection. Improved infection prophylaxis could be achieved by providing local delivery of antibiotics directly to the tissue-implant interface. Especially implant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. The objective of this experimental study was to determine the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis in a humeral non-fracture rabbit model. Activity of the PLEX-doxycycline-coating was tested against both a doxycycline susceptible (doxyS) methicillin-susceptible S. aureus (MSSA) as well as a doxycycline-resistant (doxyR) MRSA. In a rabbit intramedullary (IM) nail-related infection model, twelve rabbits received an inoculum of a doxyS MSSA direct into the medullary cavity of the humerus. After inoculation, animals received either a PLEX-doxycycline-coated nail, or an uncoated nail. The animals were observed for four weeks. Upon euthanasia, quantitative bacteriology was performed to determine bacterial load in tissues and biofilm formation on the implant. A second study was performed with sixteen rabbits receiving a DoxyR MRSA inoculum, again in coated and uncoated groups. In vitro elution studies revealed that 25% of the doxycycline was released from the PLEX-coated implants within the first day, followed by a 3% release per day up to day 28. Quantitative bacteriology revealed the presence of osteomyelitis in all animals receiving an uncoated nail in both the MSSA and the DoxyR MRSA studies (figure). All rabbits receiving a PLEX-doxycycline-coated nail were culture negative in the doxyS MSSA-group and the surrounding bone displayed a normal physiological appearance in both histological sections and radiographs. In the doxyR MRSA inoculated rabbits, a statistically significant reduction in the number of culture-positive samples was observed for the PLEX-doxycycline-coated group when compared to the animals that had received an uncoated nail, although the reduction in bacterial burden did not reach statistical significance. Improved prophylaxis against infection in trauma and orthopedic implant surgery is clearly required today. In this study, we investigated a PLEX-doxycycline-coated IM nail in a humeral non-fracture rabbit model. The PLEX-doxycycline coating on titanium alloy implants provided complete protection against implant-associated MSSA osteomyelitis, and resulted in a significant reduction in the number of culture positive samples when challenged with a doxycycline-resistant MRSA.