Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 8, Issue 5 | Pages 199 - 206
1 May 2019
Romanò CL Tsuchiya H Morelli I Battaglia AG Drago L

Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.

Cite this article: C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago. Antibacterial coating of implants: are we missing something? Bone Joint Res 2019;8:199–206. DOI: 10.1302/2046-3758.85.BJR-2018-0316.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 19 - 19
1 Jan 2017
Gallazzi E Capuano N Scarponi S Morelli I Romanò C
Full Access

Infection remains among the first reasons for failure of joint prosthesis. Currently, the golden standard for treating prosthetic joint infections (PJIs) is two-stage revision. However, two-stage procedures have been reported to be associated with higher costs and possible higher morbidity and mortality, compared to one-stage. Furthermore, recent studies showed the ability of a fast-resorbable, antibacterial-loaded hydrogel coating to reduce surgical site infections after joint replacement, by preventing bacterial colonization of implants. Aim of this study was then to compare the infection recurrence rate after a one-stage, cemenless exchange, performed with an antibacterial coated implant versus a standardized two-stage revision procedure.

In this two-center prospective study, 22 patients, candidate to revision surgery for PJI, were enrolled to undergo a one-stage revision surgery with cementless implants, coated intra-operatively with a fast-resorbable, antibiotic-loaded hyaluronan and poly-D,L-lactide based hydrogel coating (“Defensive Antibacterial Coating”, DAC, Novagenit, Italy). DAC was reconstructed according to manufacturer indications and loaded with Vancomycin or Vancomycin + Meropenem, according to cultural examinations, and directly spread onto the implant before insertion. This prospective cohort was compared with a retrospective series of 22 consecutive patients, matched for age, sex, host type, site of surgery, that underwent a two stage procedure, using a preformed, antibiotic-loaded spacer (Tecres, Italy) and a cementless implant. The second surgery, for definitive implant placing, was performed only after CRP normalization and no clinical sign of infection. Clinical, laboratory and radiographic evaluation were performed at 3, 6 and 12 months, and every 6 months thereafter. Infection recurrence was defined by the presence of a sinus tract communicating with the joint, or at least two among the following criteria: clinical signs of infections; elevated CRP and ESR; elevated synovial fluid WBC count; elevated synovial fluid leukocyte esterase; a positive cultural examination from synovial fluid; radiographic signs of stem loosening.

The two groups did not differ significantly for age, sex, host type and site of surgery (18 knees and 4 hips, respectively). The DAC hydrogel was loaded intra-operatively, according to cultural examination, with vancomycin (14 patients) or vancomycin and meropenem (8 cases). At a mean follow-up of 20.2 ± 6.3 months, 2 patients (9.1%) in the DAC group showed an infection recurrence, compared to 3 patients (13.6%) in the two-stage group. No adverse events associated with the use of DAC or radiographic loosening of the stem were observed at the latest follow-up months.

This is the first report on one-stage cementless revision surgery for PJI, performed with a fast-resorbable antibacterial hydrogel coating. Our data, although in a limited series of patients and at a relatively short follow-up, show similar infection recurrence rate after one-stage exchange with cementless, coated implants, compared to two-stage revision. These findings warrant further studies in the possible applications of antibacterial coating technologies to treat implant-related infections.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 15 - 15
1 Dec 2016
Morelli I Drago L George D Gallazzi E Scarponi S Romanò C
Full Access

Aim

The induced membrane technique (IMT) or Masquelet technique is a two-step surgical procedure used to treat bony defects (traumatic or resulting from tumoral resections) and pseudo arthroses, even caused by infections. The relatively small case series reported, sometimes with variants to the original technique, make it difficult to assess the real value of the technique. Aim of this study was then to undertake a systematic review of the literature with a particular focus on bone union, infection eradication and complication rates.

Method

A systematic review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Individual Patient Data (PRISMA-IPD) guidelines. PubMed and other medical databases were searched using “Masquelet technique” and “induced membrane technique” keywords. English, French or Italian written articles were included if dealing with IMT employed to long bones in adults and reporting at least 5 cases with a 12 months minimum follow-up. Clinical and bone defect features, aetiology, surgical data, complications, re-interventions, union and infection eradication rates were recorded into a database. Fischer's exact test and unpaired t-test were used for the statistical analysis on the individual patient's data.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 33 - 33
1 Dec 2016
Trentinaglia MT Drago L Logoluso N Morelli I Romanò C
Full Access

Aim

Implant-related infections, including peri-prosthetic joint infection (PJI) and infected osteosynthesis, are biofilm-related. Intra-operative diagnosis and pathogen identification is currently considered the diagnostic benchmark; however the presence of bacterial biofilm(s) may have a detrimental effect on pathogen detection with traditional microbiological techniques. Sonication and chemical biofilm debonding have been proposed to overcome, at least partially, this issue, however little is known about their possible economical impact. Aim of this study was to examine direct and indirect hospital costs connected with the routine use of anti-biofilm microbiological techniques applied to hip and knee PJIs.

Method

In a first part of the study, the “Turn Around Time (TAT)” and direct costs comparison between a system to find bacteria on removed prosthetic implants*, a closed system for intra-operative tissue and implant sampling, transport and anti-biofilm processing, versus sonication has been performed. An additional analysis of the estimated indirect hospital costs, resulting from the diagnostic accuracy of traditional and anti-biofilm microbiological processing has been conducted.