We aimed to compare reoperations following distal radial fractures (DRFs) managed with early fixation versus delayed fixation following initial closed reduction (CR). We used administrative databases in Ontario, Canada, to identify DRF patients aged 18 years or older from 2003 to 2016. We used procedural and fee codes within 30 days to determine which patients underwent early fixation (≤ seven days) or delayed fixation following CR. We grouped patients in the delayed group by their time to definitive fixation (eight to 14 days, 15 to 21 days, and 22 to 30 days). We used intervention and diagnostic codes to identify reoperations within two years. We used multivariable regression to compare the association between early versus delayed fixation and reoperation for all patients and stratified by age (18 to 60 years and > 60 years).Aims
Methods
This study aimed to determine if multiple failed closed reductions (CRs) prior to fixation of distal radius fracture is associated with the odds of complication-related reoperation up to two years post fracture. We identified all distal radius fracture patients aged 18 or older between the years of 2003-2016 in Ontario, Canada from linked administrative databases. We used procedural and fee codes to identify patients who underwent primary outpatient surgical fixation between 8 and 14 days post fracture, and grouped patients by the number of CRs they underwent prior to definitive fixation. We excluded patients who underwent fixation within 7 days of their fracture to exclude more complex fracture types and/or patients who required more immediate surgery. We grouped patients according to the number of CRs they underwent prior to definitive fixation. We used intervention and diagnostic codes to identify reoperations within two years of fixation. We used multi-level multivariable logistic regression to compare the association between the number of CRs and reoperation while accounting for clustering at the surgeon level and adjusting for other relevant covariables. We performed an age-stratified analysis to determine if the association between the number of CRs and reoperation differed by patient age. We identified 5,464 patients with distal radius fractures managed with outpatient fixation between 8 and 14 days of their fracture. A total of 1,422 patients (26.0%) underwent primary surgical fixation (mean time to fixation 10.6±2.0 days), while 3,573 (65.4%) underwent secondary fixation following one failed CR (mean time to fixation 10.1±2.2 days, time to CR 0.3±1.2 days), and 469 (8.6%) underwent fixation following two failed CRs (mean time to fixation 10.8±2.2 days, time to first CR 0.0±0.1 days, time to second CR 4.7±3.0 days). The CR groups had higher proportions of female patients compared to the primary group, and patients who underwent two failed CRs were more likely to be fixed with a plate (vs. wires or pins). The unadjusted proportion of reoperations was significantly higher in the group who underwent two failed CRs (7.5%) compared to those who underwent primary fixation (4.4%), and fixation following one failed CR (4.9%). Following covariable adjustment, patients who underwent two failed CRs had a significantly higher odds of reoperation (odds ratio [OR] 1.72 [1.12-2.65]) compared to those who underwent primary fixation. This association appeared to worsen for patients over the age of 60 (OR 3.93 [1.76-8.77]). We found no significant difference between the odds of reoperation between patients who underwent primary fixation vs. secondary fixation following one failed CR. We found that patients with distal radius fractures who undergo multiple CRs prior to definitive fixation have a significantly higher odds of reoperation compared to those who undergo primary fixation, or fixation following a single CR. This suggests that surgeons should offer fixation if indicated following a single failed CR rather than attempt multiple closed reductions. Prospective studies are required to confirm these findings.
Simulated learning is increasingly prevalent in many surgical training programs as medical education moves towards competency based curricula. In orthopaedic surgery, developmental dysplasia of the hip is a commonly treated diagnosis where the standard of care in patients less than six months of age is an orthotic device such as the Pavlik Harness. However, despite widespread use of the Pavlik Harness and the potential complications that may arise from inappropriate application, no formal educational methods exist. A video and model based simulated learning module for Pavlik Harness application was developed. Two novice groups (residents and allied health professionals) were exposed to the module and at pre-intervention, post-intervention and retention testing were evaluated on their ability to apply a Pavlik Harness to the model. Evaluations were completed using a previously validated Objective Structured Assessment of Technical Skill (OSATS) and a Global Rating Scale (GRS) specific to Pavlik Harness application. A control group who did not undergo the module was also evaluated at two time points to determine if exposure to the Pavlik Harness alone would affect ability. All groups were compared to a group of clinical experts who were used as a competency benchmark. Statistical analysis of skill acquisition and retention was conducted using t-tests and ANOVA. Exposure to the learning module improved resident and allied health professionals' competency in applying a Pavlik Harness (p<0.05) to the level of expert clinicians and this level of competency was retained one month after exposure to the module. Control subjects who were not exposed to the module did not improve nor did they achieve competency. The simulated learning module has been shown to be an effective tool for teaching the application of a Pavlik Harness and learners demonstrated retainable skills post intervention. This learning module will form the cornerstone of formal teaching for Pavlik Harness application in developmental dysplasia of the hip.