Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 30 - 30
1 Mar 2021
Chiaradia E Pepe M Mohren R Eveque-Mourroux M Di Meo A Orvietani P Cillero-Pastor B
Full Access

Osteochondrosis (OC) is a common joint disease that affects developing cartilage and subchondral bone in humans, and in multiple animal species including horses. It is an idiopathic localized joint disorder characterized by focal chondronecrosis and retention of growing cartilage that can lead to the formation of fissures, subchondral bone cysts or intra-articular fragments. OC is considered a complex multifactorial disease with chondrocyte biogenesis impairment mainly due to biochemical and genetic factors. Likewise, the molecular events involved in the OC are not fully understood. Moreover, the OC pathogenesis seems to be shared across species. In particular, equine OC and human juvenile OC share some symptoms, predilection sites and clinical presentation. In this study, by using the label-free mass spectrometry approach, proteome of chondrocytes isolated from equine OC fragments has been analysed in order to clarify some aspects of cell metabolism impairment occurring in OC.

Equine chondrocytes isolated from 7 healthy articular cartilages (CTRL) and from 7 osteochondritic fragments (OC) (both obtained from metacarpo/metatarsophalangeal joints) were analysed. Proteins were extracted using urea and ammonium bicarbonate buffer, reduced, alkylated and digested with Trypsin/Lys-C Mix. Peptides were analysed using Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific). All mass spectra of label-free samples analysed was set up to search against SwissProt human database (Homo sapiens) and SwissProt horse database (Equus caballus). One-way ANOVA was used for hypothesis testing. Proteins with a ≥1.5 fold change and with a FDR adjusted p value of ≤0.05 were defined as differentially expressed.

Statistical analysis evidenced 41 proteins up-regulated in OC while 18 were down-regulated with respect to the CTRL. Functional analysis showed that up-regulated proteins in OC were related to extracellular matrix degradation, lysosome, apoptotic execution phase, unfolded protein response, hyaluronan and keratan sulfate degradation, oxidative stress response and negative regulation of BMP signalling pathway. The down-regulated proteins were associated with endochondral ossification, vitamin D in inflammatory disease, Wnt signalling pathway and ECM proteoglycans. Validation assays confirmed these findings

These findings may contribute to clarify the events determining the onset and progression of both equine and human OC. Imaging MS analysis of OC and healthy cartilage to analyse lipid and metabolomic changes occurring in OC cartilage is in progress


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 76 - 76
1 Mar 2021
Tomasina C Mohren R Mulder K Camarero-Espinosa S Cillero-Pastor B Moroni L
Full Access

The extracellular matrix (ECM) is the non-cellular structural support that provides cells with a network of biochemical and biomechanical factors for cellular processes. The ECM regulates cell function, differentiation and homeostasis. Here, we present a proteomics characterization of three commonly used additive manufactured polymers: polylactic acid (PLA), polyactive (PEOT/PBT) and polycaprolactone (PCL).

We cultured human mesenchymal stromal cells (hMSCs) and make them undergo chondrogenic and osteogenic differentiation on 3D printed PCL, PEOT/PBT and PLA scaffolds. hMSCs were cultured in basal, chondrogenic and osteogenic media (200000 cells/scaffold) and analyzed after 35 days of culture. Differentiation was proved through biochemical assays, immunofluorescence and histology. The protein content was explored using label free liquid chromatography mass spectrometry (LC-MS), which revealed upregulated proteins and their related pathways.

A higher difference was found among different media compared to the scaffold type through principal component analysis (PCA). Interestingly, in all three materials, chondrogenesis was characterized by a lower but more diverse amount of proteins. PCL induced ECM production in both differentiation media, but it led to more apoptosis and GAG degradation in the chondrogenic medium compared to the osteogenic one. During chondrogenesis in PEOT/PBT and PLA, cell differentiation resulted in the activation of stress response cascades, collagen formation and ECM remodelling. On the other hand, in osteogenesis, PCL enhanced insulin-like growth factor pathway and fibrin clot related pathways.