Ideal treatment of displaced femoral neck fragility fractures in the previously ambulatory patient remains controversial. Treating these patients with total hip arthroplasty has improved patient reported outcomes and reduced rates of revision surgery compared to those treated with hemiarthroplasty. However, possible increased risk of dislocation remains a concern with total hip arthroplasty. The anterolateral and direct anterior approaches to total hip replacement have been applied in the femoral neck fracture population to minimize dislocation rates. However, the anterolateral approach has been associated with abductor injury and increased rates of heterotopic ossification while the anterior approach has been associated with peri-prosthetic femur fracture, lateral femoral cutaneous nerve injury, and wound complications. The Supercapsular Percutaneously Assisted (SuperPATH) approach was developed to minimize disruption of the capsule and short-external rotators in an effort to reduce the risk of dislocation and assist in quicker recovery in the elective hip arthroplasty setting. To achieve this, the SuperPATH technique allows the femur to be prepared in situ and the acetabulum to be reamed percutaneously once the femoral head is removed. This study investigates the post-operative time to ambulation, length of stay, discharge destination, and early dislocation rate of previously ambulatory patients with a displaced femoral neck fragility fracture that were treated with a total hip arthroplasty via the SuperPATH technique. A retrospective chart review was performed of previously ambulatory patients consecutively treated for a displaced femoral neck fragility fracture with a total hip replacement using the SuperPATH technique. Thirty-five patients were included in the study and examined for demographic data, time to ambulation, length of stay, major and minor complications during their hospital stay. Phone interviews were conducted to check for dislocation events.BACKGROUND
METHODS
The need for post-operative manipulation under anesthesia (MUA) for stiffness after primary total knee arthroplasty is a frustrating complication that can lead to suboptimal outcomes if range-of-motion to a functional level is not regained. Implant morphology and kinematics, PCL imbalance, and soft-tissue balancing can all contribute to post-operative stiffness. Utilization of total knee arthroplasty components that replicate the native knee's medial ball and socket kinematics may lead to easier maintenance of flexion post-operatively compared to conventional components. To determine if a medial pivot total knee arthroplasty design can reduce the need for post-operative MUA after primary total knee arthroplasty.BACKGROUND
PURPOSE
The direct anterior approach to THR has become an increasingly popular minimally-invasive technique in an effort to minimize dislocation risk, facility early recovery, and diminish soft tissue injury. However, it has been associated with unique complications including intraoperative femur fracture, cutaneous nerve palsy, stem subsidence, and wound healing complications. These risk of these complications have been documented to be more likely in the surgeon's early experience with the approach. The minimally-invasive Supercapsular Percutaneous-Assisted (SuperPATH) technique was developed to minimize capsular and short-external rotator injury, minimize dislocation risk, and provide an easier transition from the standard posterior approach. Fifty (50) consecutive elective total hip replacements in 48 patients were performed using the SuperPATH technique. These also represented the first fifty elective THRs the surgeon performed in practice. Indications were primary or secondary osteoarthritis (92%), avascular necrosis (6%), and impending pathologic fracture (2%). Patients were evaluated retrospectively for dislocation, major, and minor complications.INTRODUCTION
METHODS
Orientation of the acetabular component in total hip arthroplasty has been shown to influence component wear, stability, and impingement. Freehand placement of the component can lead to widely variable radiographic outcomes. Accurate abduction, in particular, can be difficult in the lateral decubitus position due to limited ability to appreciate and control positional obliquity of the pelvis. A CT-based mechanical navigation device has been shown to decrease cup placement error. This is an independent report of a single-surgeon's radiographic results using the device to control cup abduction. Sixty-four (64) consecutive elective THRs in 58 patients were performed via a supercapsular percutaneously-assisted (SuperPATH) surgical approach. Intraoperatively, the acetabular components were aligned with the aid of the CT-based mechanical navigation device (HipXpert; Surgical Planning Associates, Medford, MA). The cup orientation was then further adjusted to ensure that the anterior rim of the acetabular component was not prominent to avoid psoas impingement. Postoperatively, radiographic abduction was measured on standing postoperative radiographs.Introduction
Patients and Methods