A substantial body of evidence supports the use of extracorporeal shock wave therapy (ESWT) for fracture non-unions in human medicine. However, the success rate (i.e., radiographic union at six months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. The aim of the present study was to analyse the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel
The aim of this study is to compare the release of titanium (Ti) and zirconium (Zr) into the tissue surrounding Ti- and ZrO2-implants. Methyl methacrylate embedded mini pig maxillae with 6 Ti-implants and 4 ZrO2-implants were analysed after 12-weeks of implantation. The spatial distribution of elemental Ti and Zr in maxillae near implants was assessed with laser ablation (LA)-inductively coupled plasma (ICP)-mass spectrometry (MS). From each maxilla two bone slices adjacent to the implants were measured. The contents of Ti and Zr in these bone slices were determined by ICP-MS and ICP-optical emission spectrometry. Increased intensity of Ti and Zr could be detected in bone tissues at a distance of 891±398 µm (mean ± SD) from Ti-implants and 927±404 µm from ZrO2-implants. The increased intensity was mainly detected near implant screw threads. The average Ti content detected in 11 bone slices from samples with Ti-implants was 1.67 mg/kg, which is significantly higher than the Ti content detected in 8 slices from samples with ZrO2-implants. The highest Ti content detected was 2.17 mg/kg. The average Zr content in 4 bone slices from samples with ZrO2-implants is 0.59 mg/Kg, the other 4 bone slices showed Zr contents below the detection limit ( After 12-weeks of implantation, increased intensity of Ti and Zr can be detected in bone tissues near Ti- and ZrO2-implants. The results show that Ti content released from Ti-implants is higher than the Zr content released from ZrO2-implants.
Thickness and cellularity of human periosteum are important parameters both for engineering replacement tissue as well as for surgeons looking to minimise tissue damage while harvesting the most viable periosteum possible for autologous regenerative therapies. This study provides a new foundation for understanding the basic structural features of middiaphyseal periosteum from femora and tibiae of aged donors. A number of recent studies describe mechanical, permeability and regenerative properties of periosteal tissue and periosteum derived cells in a variety of animal models [1,2]. However, due to lack of access in healthy patients, the structural properties underlying human periosteum's inherent regenerative power and advanced material properties are not well understood. Periosteum comprises a cellular cambium layer directly apposing the outer surface of bone and an outer fibrous layer encompassed by the surrounding soft tissues. As a first step to elucidate periosteum's structural and cellular characteristics in human bone, the current study aims to measure cambium and fibrous layer thickness as well as cambium cellularity in human femora and tibiae of aged donors.Summary Statement
Introduction
There is little information about the effects of extracorporeal shock-wave about application the effects (ESWA) of on normal bone physiology. We have therefore investigated the effects of ESWA on intact distal rabbit femora in vivo. The animals received 1500 shock-wave pulses each of different energy flux densities (EFD) on either the left or right femur or remained untreated. The effects were studied by bone scintigraphy, MRI and histopathological examination. Ten days after ESWA (0.5 mJ/mm2 and 0.9 mJ/mm2 EFD), local blood flow and bone metabolism were decreased, but were increased 28 days after ESWA (0.9 mJ/mm2). One day after ESWA with 0.9 mJ/mm2 EFD but not with 0.5 mJ/mm2, there were signs of soft-tissue oedema, epiperiosteal fluid and bone-marrow oedema on MRI. In addition, deposits of haemosiderin were found epiperiosteally and within the marrow cavity ten days after ESWA. We conclude that ESWA with both 0.5 mJ/mm2 and 0.9 mJ/mm2 EFD affected the normal bone physiology in the distal rabbit femur. Considerable damaging side-effects were observed with 0.9 mJ/mm2 EFD on periosteal soft tissue and tissue within the bone-marrow cavity.