Osteoarthritis of the glenohumeral joint leads to global degeneration of the shoulder and often results in humeral or glenoid osteophytes. It is established that the axillary neurovascular bundle is in close proximity to the glenohumeral capsule. Similar to other compressive neuropathies, osteophytic impingement of the axillary nerve could result in axillary nerve symptoms. The purpose of this study was to compare the proximity of the axillary neurovascular bundle to the inferior humerus in shoulders to determine distance of the neurovascular bundle as the osteophyte (goat's beard) of glenohumeral osteoarthritis develops. In this IRB approved study, preoperative MRI's of 98 shoulders (89 patients) with primary osteoarthritis (OA group) were compared to 91 shoulders (86 patients) with anterior instability (Control group). For MRI measurements (mm) two coronal-oblique T1 or proton density weighted images were selected for each patient located at 5 and 6 o'clock position of the glenoid in the parasagittal plane. Humeral head diameter to standardize the glenohumeral measurements, size of the spurs, and 6 measurements between osseus structures and axillary neurovascular bundle were obtained on each image using a calibrated measurement system (Stryker Office PACS Power Viewer). Level of significance was set at p>.05.Introduction
Methods
In ten male rats we inserted ceramic ‘drawing-pin’ implants in weight-bearing positions within the right proximal tibia. Two animals were killed 6 weeks after surgery and two more 14 weeks after surgery. The remaining six received intra-articular injections of either high-density polyethylene (4 rats) or saline (2 rats) at 8, 10 and 12 weeks after surgery. These animals were killed two weeks after the last injection. Histological examination of the bone-implant interface in the control animals showed appositional bone growth around the implant at both 6 and 14 weeks. Polyethylene, but not saline, caused a chronic inflammatory response with numerous foreign-body giant cells in periprosthetic tissues. Our model of a stable, weight-bearing bone-implant interface provides a simple and reliable system in which to study in vivo the effects of particulate materials used in orthopaedic surgery.