Altered mechanical loading is a contributing factor to low back pain, a condition affecting 80% of the population at some point in life. A plethora of in-vitro studies exist focusing on 6 degree of freedom (dof) testing of functional spinal units (FSU) to obtain a specimen stiffness matrix. Due to differences in the performance of test apparatus and in the technique used to manipulate raw data it is difficult to compare results from different groups. Our primary objective was to develop a standardised technique to benchmark the performance of testing apparatus; a secondary objective was to standardise the data manipulation technique.Abstract
Introduction
Objectives
250 words max Long polished cemented femoral stems, such as the Exeter Hip Revision stem, are one option available to the revision hip arthroplasty surgeon. When proximal bone stock is compromised, distal fixation is often relied upon for stability of the femoral component. In such circumstances, torsional forces can result in debonding and loosening. This study compared the torsional behaviour of a cemented polished and featureless (plain) stem with cemented, polished stems featuring fins or flutes. Nine torsional tests were carried out on each of these three different stem designs. The finned stem construct was significantly stiffer than the fluted stem (mean 24.5 Nm/deg v 17.5 Nm/deg). The plain stem mean stiffness was less than the featured stems (13 Nm/deg), but wide variability lead to no statistically significant difference. The maximum torque of the finned (30.5 Nm) and fluted stems (29 Nm) was significantly higher than the plain stem (10.5 Nm); with no significance to the difference between the finned and fluted stems. Distal stem features may provide a more reliable and greater resistance to torque in polished, cemented revision hip stems. Finned stem features may also increase the stiffness of the construct. Consideration should thus be given to the incorporation of distal stem features in the design of revision hip stems.