Altered mechanical loading is a contributing factor to low back pain, a condition affecting 80% of the population at some point in life. A plethora of in-vitro studies exist focusing on 6 degree of freedom (dof) testing of functional spinal units (FSU) to obtain a specimen stiffness matrix. Due to differences in the performance of test apparatus and in the technique used to manipulate raw data it is difficult to compare results from different groups. Our primary objective was to develop a standardised technique to benchmark the performance of testing apparatus; a secondary objective was to standardise the data manipulation technique.Abstract
Introduction
Objectives
250 words max Long polished cemented femoral stems, such as the Exeter Hip Revision stem, are one option available to the revision hip arthroplasty surgeon. When proximal bone stock is compromised, distal fixation is often relied upon for stability of the femoral component. In such circumstances, torsional forces can result in debonding and loosening. This study compared the torsional behaviour of a cemented polished and featureless (plain) stem with cemented, polished stems featuring fins or flutes. Nine torsional tests were carried out on each of these three different stem designs. The finned stem construct was significantly stiffer than the fluted stem (mean 24.5 Nm/deg v 17.5 Nm/deg). The plain stem mean stiffness was less than the featured stems (13 Nm/deg), but wide variability lead to no statistically significant difference. The maximum torque of the finned (30.5 Nm) and fluted stems (29 Nm) was significantly higher than the plain stem (10.5 Nm); with no significance to the difference between the finned and fluted stems. Distal stem features may provide a more reliable and greater resistance to torque in polished, cemented revision hip stems. Finned stem features may also increase the stiffness of the construct. Consideration should thus be given to the incorporation of distal stem features in the design of revision hip stems.
With the development of new implants there is an increasing need for biomechanical studies. The problem of obtaining human specimen is well appreciated. Porcine spines are commonly used. To date there are no studies delineating the anatomy of porcine thoracolumbar vertebrae. The objective of this study is to provide a comprehensive database of measurements for the porcine thoracolumbar vertebrae with a view to help plan future studies contemplating their use. 6 adult porcine spines from 18–24 month old male pigs weighing 60 to 80 kilograms were obtained and dissected of soft tissue. The lowest thoracic and all the lumbar vertebrae were used in our experiment (n=42). 15 anatomical parameters from each vertebra were measured by 2 independent observers using digital calipers (Draper® PVC150D, accuracy ± 0.03mm). The mean, SD and SEM were calculated using Microsoft Excel. Results were compared with available data on human vertebra (Panjabi et al 1991,1992; Zindrick et al 1987; Kumar et al 2000). The inter class correlation coefficient for the observers was 0.997. The intra-observer agreement was statistically robust (0.994). The vertebral bodies of the porcine vertebra were larger while both the upper and lower endplate depth and width were smaller than the human specimens. The pedicle width and depth was greater than the human specimens. The spinal canal length and depth of the porcine spine were smaller than humans indicating a narrow spinal canal. The spinous process length showed an increase from T16 to L1. This was in contrast to human spinous process. This study provides a comprehensive database of anatomical measurements for the porcine thoracolumbar vertebra and highlights the differences in morphometry. These should borne in mind when designing studies using porcine spines and the implants matched accordingly. The measurements are also useful when extrapolating data from studies where porcine spines have been used.
Thickness (mm)
Stiffness (Nm / Degree)
1
58 +/− 4
2
37 +/− 1
3
39 +/− 1
4
25 +/− 0.3
5
24 +/− 0.3
One hundred Newtons was decided on as the maximum force following measurements in theatre showing a force of approximately 75N were applied to a hamstring ACL graft at the time of fixation in the tibial tunnel. The DVRT’s allowed accurate assessment of the Load/Displacement of each tendon in the construct to be assessed. Repeatability experiments on the DVRT’s were performed. Ten specimens were prepared which were all tested in the different suturing configurations. Each test was repeated three times on each construct.