Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used. We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA.Aims
Methods
Tranexamic acid (TXA) has been shown to reduce blood loss and transfusion requirements in patients undergoing orthopaedic surgery. There remains a lack of prospective evidence for the use of TXA in patients undergoing periacetabular osteotomy (PAO). The purpose of this study was to determine if intravenous (IV) TXA is effective in reducing calculated blood loss and transfusions after PAO. This was a single-centre prospective double-blind placebo-controlled randomized trial of 81 patients aged 12 to 45 years undergoing elective PAO by a single surgeon. The intervention group (n = 40) received two doses of IV TXA of a maximum 1 g in each dose; the control group (n = 41) received two doses of 50 ml 0.9% saline IV. The primary outcome was perioperative calculated blood loss. Secondary outcomes included allogenic transfusions and six-week postoperative complications.Aims
Methods
Health economic evaluations potentially provide
valuable information to clinicians, health care administrators,
and policy makers regarding the financial implications of decisions
about the care of patients. The highest quality research should
be used to inform decisions that have direct impact on the access
to care and the outcome of treatment. However, economic analyses
are often complex and use research methods which are relatively unfamiliar
to clinicians. Furthermore, health economic data have substantial
national, regional, and institutional variability, which can limit
the external validity of the results of a study. Therefore, minimum
guidelines that aim to standardise the quality and transparency
of reporting health economic research have been developed, and instruments
are available to assist in the assessment of its quality and the
interpretation of results. The purpose of this editorial is to discuss the principal types
of health economic studies, to review the most common instruments
for judging the quality of these studies and to describe current
reporting guidelines. Recommendations for the submission of these
types of studies to Cite this article:
Obesity is a risk factor for acetabular malposition when total hip arthroplasty (THA) is performed with manual orientation techniques. However, conflicting evidence exists regarding the usefulness of computer-assisted surgery for performing THA in obese patients. The purpose of this study was to compare the precision and accuracy of imageless navigation for acetabular component placement in obese versus non-obese patients. After institutional review board approval, 459 THA performed for primary hip osteoarthritis were reviewed retrospectively. The same imageless navigation system was used for acetabular component placement in all THA. During surgery the supine anterior pelvic plane was referenced superficially. THA was performed via posterolateral approach in the lateral position. A hemispherical acetabular component was used, with target inclination of 40° and target anteversion of 25°. Computer software was used to determine acetabular orientation on postoperative anteroposterior pelvic radiographs. Obese patients (BMI ≥ 30 kg/m2) were compared to non-obese patients. A 5° difference in mean orientation angles was considered clinically significant. Orientation error (accuracy) was defined as the absolute difference between the target orientation and the measured orientation. Student's t test was used to compare means. Hartley's test compared variances of the mean differences (precision). Fisher exact tests examined the relationship between obesity and component placement in the target zone (target ± 10°) for inclination and version. All statistical tests were two-sided with a significance level of 0.05. Differences in mean inclination and anteversion between obese and non-obese groups were 1.1° (p=0.02 and p=0.08, respectively), and not clinically significant. Inclination accuracy trended toward improvement for non-obese patients (p=0.06). Inclination precision was better for non-obese patients (p=0.006). Accuracy and precision for anteversion were equal between the two groups (p=0.19 and p=0.95, respectively). There was no relationship between obesity and placement of the acetabulum outside of the target ranges for inclination (p=0.13), anteversion (p=0.39) or both (p=0.99), with a trend toward more inclination outliers in obese patients versus non-obese patients (7.3% versus 3.9%). The observed differences in mean acetabular orientation angles were not clinically significant (< 5°), although inclination orientation was less accurate and precise for obese patients. In contrast to existing literature, we found no difference in the accuracy and precision with regard to anteversion in obese and non-obese patients. We propose that accurate superficial registration of landmarks in obese patients is achievable, and the use of imageless navigation likely improves acetabular positioning in obese and non-obese patients.
Surgeons often target the Lewinnek zone (40°±10° of inclination; 15°±10° of anteversion) for acetabular orientation during total hip arthroplasty (THA). However, matching native anteversion (20°-25°) may achieve optimal stability. The purpose of this study was to (1) determine incidence of early dislocation with increased target acetabular anteversion, and (2) report the accuracy of imageless navigation for achieving target acetabular position in a large, single-surgeon cohort. A posterolateral approach with soft tissue repair was performed in the 553 THA meeting the inclusion criteria. The same imageless navigation system was used for acetabular component placement in all THA. Target acetabular orientation was 40° ± 10° of inclination and 25° ± 10° of anteversion. Computer software was used to measure acetabular positioning on 6-week postoperative anteroposterior pelvic radiographs. Incidence of dislocation within 6 months of surgery was determined. Repeated measures multiple regression using the Generalised Estimating Equations approach was used to identify baseline patient characteristics (age, gender, BMI, primary diagnosis, and laterality) associated with component positioning outside of the targeted ranges for inclination and anteversion. Fisher exact tests were used to examine the relationship between dislocation and component placement in either the Lewinnek safe zone or the targeted zone. All tests were two-sided with a significance level of 0.05. Mean inclination was 42.2° ± 4.9°, and mean anteversion was 23.9° ± 6.5°. 82.3% of cups were placed within the target zone. Variation in anteversion accounted for 67.3% of outliers. Only body mass index was associated with inclination outside the target range (p = 0.017), and only female gender was associated with anteversion outside the target range (p = 0.030). Six THA (1.1%) experienced early dislocation, and 3 THA (0.54%) were revised for multiple dislocations. There was no relationship between dislocation and component placement in either the Lewinnek zone (p = 0.224) or the target zone (p = 0.287). This study demonstrates that increasing target acetabular anteversion using the posterolateral approach does not increase the incidence of early THA dislocation. However, the long-term effects on bearing surface wear and stability must be elucidated. The occurrence of instability even in patients within our target zone emphasises the importance of developing patient-specific targets for THA component alignment.