Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 98 - 98
23 Feb 2023
Woodfield T Shum J Tredinnick S Gadomski B Fernandez J McGilvray K Seim H Nelson B Puttlitz C Easley J Hooper G
Full Access

Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force.

A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate.

Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1.

Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft titanium orthopaedic implants enhance strain induced bone formation and have significant importance in future implant design for knee, hip arthroplasty and treatment of large load-bearing bone defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 99 - 99
23 Feb 2023
Woodfield T Shum J Linkhorn W Gadomski B Puttlitz C McGilvray K Seim H Nelson B Easley J Hooper G
Full Access

Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed titanium interbody cages without autologous bone graft and assessed their biological performance in a pre-clinical in vivo interbody fusion model in comparison to the gold standard, PEEK with graft.

Titanium interbody spacers were 3D Printed with a microporous (Ti1: <1000μm) and macroporous (Ti2: >1000μm) design. Both Ti1 and Ti2 had an identical elastic modulus (stiffness), and were similar to the elastic modulus of PEEK. Interbody fusion was performed on L2-L3 and L4-L5 vertebral levels in 24 skeletally mature sheep using Ti1 or Ti2 spacers, or a PEEK spacer filled with iliac crest autograft, and assessed at 8 and 16 weeks. We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Functional spinal units were biomechanically tested to analyse range of motion, neutral zone, and stiffness. Results: Bone formation in macroporous Ti2 was significantly greater than microporous Ti1 treatments (p=.006). Fusion scores for Ti2 and PEEK demonstrated greater rates of bone formation from 8 to 16 weeks, with bridging rates of 100% for Ti2 at 16 weeks compared to just 88% for PEEK and 50% for Ti1. Biomechanical outcomes significantly improved at 16 versus 8 weeks, with no significant differences between Ti and PEEK with graft.

This study demonstrated that macroporous 3D Printed Ti spacers are able to achieve fixation and arthrodesis with complete bone fusion by 16 weeks without the need for bone graft. These significant data indicate that low-modulus 3D Printed titanium interbody cages have similar performance to autograft-filled PEEK, and could be reliably used in spinal fusion avoiding the complications of bone graft harvesting.