header advert
Results 1 - 5 of 5
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 40 - 40
1 Oct 2012
McCoy B Yaffe M Stulberg S
Full Access

Custom instrumentation in TKA utilises pre-operative imaging to generate a customised guide for cutting block placement. The surgeon is able to modify the plan using three-dimensional software. Although this technology is increasingly gaining acceptance, there is a paucity of clinical data supporting it.

One hundred and eleven patients underwent primary TKA using the Zimmer Patient-Specific Instrumentation (PSI) system, in 28 of the cases surgical navigation was used to validate the PSI-generated cuts. Alignment measurements included long-leg alignment and biplanar distal femoral and proximal tibial cuts. Further measurements evaluated femoral implant placement in the AP plane, femoral component rotation, measured bone resection and implant sizing accuracy.

The mean final limb alignment as recorded by computer-assisted surgical (CAS) tools was 0.3° of varus. Only two limbs were malaligned by greater than 3°. The femoral component had a mean alignment of 0.3° of valgus and 4.5° of flexion (PSI plan 3° flexion). The predicted femoral size was accurate in 89% of cases and the anterior femoral cut was congruent with the anterior cortex in 92% of cases. The PSI-directed femoral component rotation was consistent with the surgeon's perceived rotation in 95% of cases. The posterior condylar bone resection had a mean difference of < 1mm from the predicted resection.

The tibial component had a mean alignment of 0.5° of varus and 8.5° of posterior slope (PSI plan 7° posterior slope). The only statistically significant deviation in alignment was the increased tibial slope (p = 0.046). The tibial component size was accurately predicted in 66% of cases.

Custom instrumentation in total knee arthroplasty accurately achieved implant and limb alignment in our study. The plan was more reproducible on the femoral slide. The overestimation of tibial slope and tibial sizing incongruity were related to some of the reference points for the software. A potential benefit of this technology is improved mid-flexion stability by accurately determining femoral component size, placement, and rotation. Further studies will need to be conducted to determine the efficiency and cost-effectiveness of this technology.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 3 - 3
1 Oct 2012
Yaffe MA McCoy B Greene S Luo M Cayo M Stulberg S
Full Access

Computer-assisted surgery (CAS) is a tool developed to allow accurate limb and implant alignment in total knee arthroplasty [TKA]. The strength of the technology is that it allows the surgeon to assess soft tissue balance and ligament laxity in flexion and extension. The accuracy of this ligament balancing technology depends upon an accurate determination of femoral component size. This size is established with intraoperative surface registration techniques. Customised instrumentation (CI) is a measured resection technique in which component size is established on preoperative 3D MRI reconstructions. The purpose of this study is to determine how these two computer-based technologies compare with regard to the accuracy with which femoral component size is established in TKA.

67 TKA were performed using CI and 30 TKA were performed using CAS by a single surgeon. CI-predicted and CAS-predicted femoral component size were compared to actual component selection. The process by which CI and CAS perform an anatomic registration was evaluated.

The CI and CAS systems accurately predicted surgeon-selected femoral component size in 89% and 43% of cases, respectively (p<0.001). The discrepancy between predicted and actual femoral component size with CI and CAS was 0.1 and 0.8 sizes, respectively (p<0.001). The maximum deviation between predicted and actual femoral component size was greater in CAS than in PMI (three sizes versus one size, respectively). The anterior cortex cut was flush in 92% of CI cases. The rotation profile was consistent with Whiteside's line in 95% of CI cases.

The CI system was both more accurate and more precise than the CAS navigation system in predicting femoral component size in TKA. CI utilises preoperative MR imaging to generate femoral component sizing based on optimizing medial-lateral fit with a measured posterior femoral bone resection. CAS utilises surface registration techniques based on anatomic site registration that may be subject to intraoperative measurement error due to difficult visualization (femoral epicondyles), inherent subjectivity (Whiteside's line) or anatomic variation (hypoplastic posterior condyles). CI bases implant sizing solely on reproducing an anatomical fit and a measured resection technique, whereas CAS attempts to balance an anatomic fit with optimal soft tissue balancing. In this study, the surgeon's final component selection was more likely to be in accordance with the CI rather than the CAS sizing algorithm. The CI system was capable of accurate femoral component placement in TKA.

This study suggests that intraoperative surface registration may not be as accurate as preoperative 3D MRI reconstructions for establishing optimal femoral component sizing. Surgeons using intraoperative navigation based surface registration need to be aware of this when making femoral component size selection, establishing ligament balance, and determining femoral rotation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 221 - 221
1 Sep 2012
Yaffe M McCoy B Patel A Stulberg SD
Full Access

Introduction

Computer-assisted surgery (CAS) is a tool developed to allow accurate limb and implant alignment in TKA. The strength of the technology is that it allows the surgeon to assess soft tissue balance and ligament laxity in flexion and extension. The accuracy of this ligament balancing technology depends upon an accurate determination of femoral component size. This size is established with intraoperative surface registration techniques. Customized instrumentation (CI) is a measured resection technique in which component size is established on preoperative 3D MRI reconstructions. The purpose of this study is to determine how these two computer-based technologies compare with regard to the accuracy with which femoral component size is established in TKA.

Methods

67 TKA were performed using CI and 30 TKA were performed using CAS by a single surgeon. CI-predicted and CAS-predicted femoral component size were compared to actual component selection. The process by which CI and CAS perform an anatomic registration was evaluated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 222 - 222
1 Sep 2012
McCoy B Yaffe M Stulberg SD
Full Access

Introduction

Custom instrumentation in TKA utilizes pre-operative imaging to generate a customized guide for cutting block placement (Figure 1). The surgeon is able to modify the plan using three-dimensional software (Figure 2). Although this technology is increasingly gaining acceptance, there is a paucity of clinical data supporting it.

Methods

One hundred and eleven patients underwent primary TKA using the Patient-Specific Instrumentation (PSI) system, in twenty-eight of the cases surgical navigation was used to validate the PSI-generated cuts. Alignment measurements included long-leg alignment and biplanar distal femoral and proximal tibial cuts. Further measurements evaluated femoral implant placement in the AP plane, femoral component rotation, measured bone resection and implant sizing accuracy.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 139 - 139
1 Sep 2012
Patel A Yaffe M McCoy B Stulberg SD
Full Access

Introduction

Most surgeons utilize one of three axis options in conventional total knee arthroplasty (TKA), the transepicondylar axis (TEA), Whiteside's line (WSL) or the posterior condylar axis (PCA) with an external rotation correction factor. Each option has limitations and no clear algorithm has been determined for which option to use and when. Many surgeons believe the TEA to be the gold standard for determining rotation however it can be difficult to access intraoperatively. WSL and PCA have been used as surrogates for determining axial rotation in conventional TKA but may also be prone to error. MRI based preoperative planning systems overcome intraoperative limitations while accounting for the individual anatomy of each patient, thus helping optimize femoral component rotation. The goal of this study was to examine if coronal plane deformity had any effect on the relationship of conventional referencing options such as WSL and PCA to the TEA.

Methods

Utilizing a preoperative planning software based on MRI, we compared the preoperative posterior femoral condyle resections for three different axis options in 176 TKA. The difference in bone resection amount was used to determine the rotational differences between the axis options in all knees. Assuming that the TEA was the ideal rotational axis, we compared the TEA to both WSL and PCA. A 1-sample t-test and paired t-test were then used to determine if there was a significant rotational difference between the various axis options when accounting for degree and direction of preoperative deformity in the coronal plane.