header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 73 - 73
1 Mar 2021
Murphy B McCabe J
Full Access

Abstract

Objective

Spinal cord surgery is a technically challenging endeavour with potentially devastating complications for patients and surgeons. Intra-operative neurophysiological monitoring(IONM), or spinal cord monitoring (SCM), is one method of preventing and identifying damage to the spinal cord. At present, indications for its use are based more on individual surgeon preference and for medico legal purposes. Our study aimed to determine IONM's utility as a clinical tool.

Methods

This is a retrospective case series of 169 patients who underwent spinal surgery with IONM at two institutions between 2013 and 2018. Signal changes detected were recorded as well as the surgeon's response to these changes. Patients were followed up to one-year post-surgery using our institution's EVOLVE system. The main outcome measure in this study was new post-operative neurological signs and/or symptoms and what effect, if any, IONM and subsequent surgeon intervention had on these complications.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 122 - 122
1 Nov 2018
Parle E Tio S Behre A Carey J Murphy C O'Brien T Curtin W Kearns S McCabe J Coleman C Vaughan T McNamara L
Full Access

Recent studies have shown that bone mineral distribution is more heterogeneous in bone tissue from an animal model of osteoporosis and osteoporotic human vertebral trabeculae. These tissue alterations may play a role in bone fragility seen in osteoporosis, albeit that they are not detectable by current diagnostic techniques (dual-energy X-ray absorptiometry, DXA). Type II Diabetes Mellitus (T2DM) also increases a patient's fracture risk beyond what can be explained or diagnosed by DXA, and is associated with impaired bone cell function, compromised collagen structure and reduced mechanical properties. However, it is not currently known whether osteoporosis or T2DM leads to an increased mineral heterogeneity in the femoral head of humans, a common osteoporotic fracture site. In this study, we examine bone microarchitecture, mineralisation and mechanical properties of trabecular bone from osteoarthritic, diabetic and osteoporotic patients. We report that while osteoporotic trabecular bone has significantly deteriorated mechanical properties and microarchitecture compared to the other groups, there is also a significant increase in mean mineral content. Moreover, the heterogeneity of the mineral content in osteoporotic bone is significantly higher than osteoarthritic (+35%) and diabetic (+13%) groups. We propose that the compromised architecture following bone loss at the onset of osteoporosis alters the mechanical environment, which initiates compensatory changes in mineral content. We show for the first time that trabecular bone mineralisation is significantly more heterogeneous (+20%) in T2DM compared to osteoarthritic controls. Interestingly, bone microarchitecture and mechanical properties are not significantly different between diabetic and osteoarthritic groups despite this increase in mineral heterogeneity.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 25 - 25
1 May 2017
Hurley R Concannon J Lally N McCabe J
Full Access

Background

Comminuted fractures involving the tibia are associated with a high level of complications including delayed healing and non-union, in conjunction with dramatically increased healthcare costs. Certain clinicians utilise a Pixel Value Ratio (PRV) of 1 to indicate such fracture healing. The subjectivity of this method has led to mixed outcomes including regenerate fracture. The poor prognosis of complex load bearing fractures is accentuated by the fact that no quantitative gold standard currently exists to which clinicians can reference regarding the definition of a healed fracture. The aim of the current study is to use patient specific finite element analysis of complex tibial fractures treated with Ilizarov frames to demonstrate callus maturation and to determine the optimum frame removal time.

Methods

3 patients (2 males, 1 female) were analysed following presentation with complex tibial fractures treated with Ilizarov frames. Patient specific computational analysis was performed according to radiographic data, incorporating maturing material properties to analyse the callus response to weight bearing over the healing timeframe. Computational results were compared to the PVR method to evaluate its efficacy in determining the optimum Ilizarov frame removal time.