Manoli and Schaeffer in 1987, showed that fixation by antiglide plate demonstrated superior static biomechanical properties compared to lateral plating. However there are some shortcomings in their study and hence we decided to perform our biomechanical study. The shortcomings of the Manoli study are. They did not use an interfragmentary lag screw for lateral plate fixation. It was a cadaveric study where the bone does not accurately represent the live bone. The quality of the bone ranging from normal to osteoporotic bone varies from cadaver to cadaver and hence there is no uniformity between the samples.
These bones were custom made for the experiment. We used two sets of bones, one representative of normal bone (Set A n=10) and the other of osteoporotic bone quality (Set B n=10). Each of the sets A &
B will have two types of fixations for artificially created Weber B Fractures.
Lateral plate with interfragmentary lag screw. Antiglide plate with interfragmentary lag screw. The strength of the fixation was measured by restressing the bone until the fixation failed using an Instron machine which simultaneously applied torque and compressive forces to the fibular construct. The resulting data was analysed on a computer and statistical analysis was performed.
The concept of tension band wiring is based on the fact that the distractive force applied to one surface of the bone will result in compression on the opposite articular surface. Clinical outcomes of TBW are not equivocal. It is associated with significant morbidity such as non union, failure of fixation, especially in osteoporotic bone and infection which sometimes leads to amputation. Often a second procedure for removal of prominent metal work is required. In our biomechanical study we investigated this concept as we believe that the forces generated by TBW construct do not generate significant compressive forces required for healing of fracture.
The advantage of using 4th generation composite bone model is that it provides uniformity which is not achievable in cadaveric studies. Two different bone models representative of Olecranon and patella were used. Transverse fractures were created in the bones and fixed with TBW technique as described in A.O. manual. Two 0.062-inch Kirschner wires and figure of eight configuration of 18G Stainless steel wire with single knot technique was used. Micro motion transducers (DVRT: MicroStrain, Williston, Vermont) with an accuracy of ± 1μm were placed across the fracture site both anteriorly and posteriorly. Continuous information regarding fracture distraction and compression, as determined by the transducers was recorded from both sites simultaneously during the experiment. The tension band wire construct was loaded up to a maximum force of 4000 Newtons for patella and 500 for the olecranon. The fractures were subjected to cyclic loading at 1Hz using a servo hydraulic materials-testing system (model 8500; Instron, Canton, Massachusetts). The results were analysed on a computer and statistical analysis performed.
non-English speakers non-resident in Ireland previous diagnosis of osteoporosis or commenced on treatment for osteoporosis not fit to attend for DEXA scan not willing to participate in the study 100 consecutive patients presenting to the fracture service with distal radial fragility fractures were prospectively identified. Data was collected, including body mass index (BMI), risk factors for osteoporosis, and the OST risk index calculated. A DEXA scan was then performed on the patient’s hips and lumbar spine.