The calcar femorale or ‘true neck’ of the femur has a role in transmitting load from the cantilevered neck to the femoral shaft (Zhang 2009). It can appear as a distinct condensation in clinical CT images because its structure is very similar to compact bone (Aspden 1998). Harty (1957) proposed that the calcar acts as a ‘spike’ in certain fall situations, contributing to splitting of the trochanter. We hypothesised that among elderly fallers, the size of the calcar would influence whether fractures occurred in the trochanteric (TR) or femoral neck (FN) site. We also asked whether patients who sustained a fracture had more or less calcar bone than frailty-matched controls that fell but didn't fracture. The FEMCO study is designed to investigate male (M) and female (F) patients with acute hip fracture with multi-detector CT, before they undergo surgery. It includes an age, sex and frailty-matched control group (who have sustained at least one injurious fall without hip fracture). The fractured hip is reconstructed in 3D for classification of fracture type (FN or TR). For the present pilot study, there were 14 cases (5TR, 9FN mean 80+/−8.5yrs. 7M, 7F) and 11 controls (83+/−7.0yrs. 3M, 8F). Axial CT slices where a calcar was visible were opened in Stradwin 4.1 software (Treece 2011). The calcar femorale was semi-automatically selected with the flood fill tool. Each axial image that contained a visible calcar was included in the analysis, so that for each femur a single calcar volume was generated. Results were examined using ANOVA. Combining male and female results, there was a non-significant trend towards a higher calcar volume in patients sustaining trochanteric rather than femoral neck fractures (0.73cm3 +/− 0.26 vs 0.61cm3 +/−0.14, p=0.27) but no difference between cases and controls. Males had a significantly higher calcar volume than females (mean 0.82cm3 +/− 0.24 vs 0.59cm3 +/− 0.13, p=0.005). Further studies are now planned in larger samples of each sex, to examine the role of the calcar in fracture mechanics. Three-dimensional visualisations provide a novel insight into the damage patterns and resultant fragment locations.
Areal BMD (aBMD) is relatively poor at discriminating those patients at risk of hip fracture. This study tested the hypothesis that a measure of bending resistance, cross section moment of inertia (CSMI) and section modulus, derived from 3D peripheral quantitative computed tomography (pQCT) images made ex-vivo, would discriminate cases of hip fracture from controls better than areal bone mineral density. The biopsies were from (n = 20, F) subjects that had suffered an intracapsular hip fracture. The control material (n = 23, F) was from post-mortem subjects. Serial pQCT 1mm thick cross-sectional images using the Densiscan 1000 pQCT clinical forearm densitometer were obtained, and matched for location along the neck. The image voxels were converted to units of bone mass, which were then used to derive the mass weighted CSMI (MWCSMI), section modulus and areal bone mineral density, (see Table). The aBMD results showed that the difference between the means of the fracture cases compared to the controls was 9.9% (−0.061g/cm2; +0.0055g/cm2, −0.127g/cm2; 95% confidence interval). However, the MWCSMI was 29.5% (−5966mm4; −8868mm4,−3066mm4; 95% confidence interval) lower in the fracture cases compared to the controls, while section modulus was 32.5% (−242mm3; −133mm3, −352mm3 95% confidence interval) lower. When presented as Z scores the fracture cases had considerably lower section modulus Z scores (mean −1.27 SD, p=0.0001) than aBMD – Z scores (mean −0.5 SD, p=0.07). To simulate the forces experienced during a sideways fall, the model’s neutral axis was rotated by 210°. The results were similar for section modulus to those at 0°. This study suggests that biomechanical analysis of the distribution of bone within the femoral neck may offer a marked improvement in the ability to discriminate patients with an increased risk of intracapsular fracture. Progress towards implementing this form of analysis in clinical densitometry should improve its diagnostic value.