header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 48 - 48
1 Mar 2021
Matthies N Paul R Dwyer T Whelan D Chahal J
Full Access

Quadriceps tendon ruptures are a rare but debilitating injury resulting in loss of knee extension necessitating surgical intervention. Currently, multiple different surgical techniques and rehabilitation programs are utilized by surgeons. Researchers have been unable to determine the best surgical technique with respect to function and complication rate; certain techniques are more cost-effective than others. Early vs. late motion rehabilitation programs are utilized; recent evidence suggests that less aggressive initial rehabilitation may lead to decreased extensor lag and fewer additional surgeries. The goal of our study is to determine the treatment practices of orthopaedic surgeons across Canada.

Our study was completed anonymously via SurveyMonkey.com (Palo Alto, California). Based on current literature, a 26-question survey was distributed. E-mail invitations were be sent to all members of the Canadian Orthopaedic Association. Participation is voluntary.

Currently, 104 surveys have been completed. 78% of respondents utilize transosseous drill holes, 13% utilize suture anchors and 9% utilize a combined surgical technique. The majority of surgeons begin range of motion (ROM) at 2 weeks (42%) or 6 weeks (24%); ROM is then commonly progressed in a step-wise fashion at 2-week intervals (58%). Approximately half of respondents have performed revision surgery for quadriceps re-rupture.

Surgical management of quadriceps tendon ruptures is fairly consistent amongst Canadian orthopaedic surgeons. However, wide variation exists regarding rehabilitation, favoring early initiation and progression of ROM despite some evidence recommending a longer period of immobilization.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 93 - 93
1 Jul 2020
Conlin C Ogilvie-Harris D Phillips L Murnaghan L Theodoropoulos JS Matthies N
Full Access

The purpose of this study was to determine whether the reasons for delay to surgery are secondary to health system constraints or patient factors. This study explored factors that contribute to patients' delay to surgery as well as how patients perceive the delay in surgery to have affected their treatment and care.

Semi-structured qualitative interviews were conducted with 30 patients aged 18 to 50 years old who had undergone arthroscopic ACL reconstruction. Qualitative data analysis was performed in accordance with the Straus and Corbin theory to derive codes, categories and themes.

Patient interviews revealed three overarching themes regarding delay to ACL reconstruction surgery: access to care, finances and work, and personal advocacy. Elements of those factors were shown to influence the timing of ACL reconstruction surgery. Less common factors included choice of imaging study (i.e., ultrasound), geography, and family commitments.

Patients' perceptions of delay in access to care was overwhelming due to the wait time for MRI. Several patients also described significant self-advocacy required to navigate the healthcare system, suggesting that some level of medical literacy may be necessary to gain timely access to surgery. Once patients had seen the surgeon, few patients described untimely delay to surgery, suggesting that OR resources are adequate. Recommendations to decrease delays to ACL reconstruction surgery include better access to MRI and broader education of non-surgical healthcare providers to help navigate access to surgery.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 66 - 66
1 Sep 2012
Adesida A Matthies N Sierra A Jomha NM
Full Access

Purpose

The biomechanical role of the meniscus in the knee joint is a function of its extracellular matrix which consists of type I collagen throughout, type II collagen in the inner meniscus region and glycosaminoglynated (GAG) proteins of which aggrecan is the most prevaleet. Meniscus reparative capacity is limited, particularly when a defect is located in the inner avascular portion, and menisectomy predisposes the joint to osteoarthritis. Using meniscus cells in tissue engineering strategies has been advocated to generate functional meniscus substitutes. However, meniscus cells, like chondrocytes of cartilage, lose their matrix-forming phenotype during culture expansion. Co-culture of chondrocytes with stem cells has been shown to result in enhanced matrix formation. We hypothesized that meniscus cells in co-culture with stem cells will result in increased matrix formation.

Method

Tissue specimens were obtained after approval of the local ethical committee and informed consent. Menisci were obtained from 3 patients undergoing total knee arthroplasty; (53–84; mean age 66.6). Meniscus cells were isolated after digestion of menisci with collagenase II. Isolated meniscus cells were plated for 24–48 hr before use. Bone marrow aspirates were obtained from the iliac crest of 3 donors: 1 female (46) and 2 males (15 and 21) undergoing routine orthopaedic procedures. Plastic adherent bone marrow stromal cell populations were isolated and expanded under normal oxygen tension of 21%O2 in a-MEM growth media plus FGF-2 until passage 2. Cells were mixed at a variety of meniscus cells (Men): BMSC ratio including 5/95, 10/90 and 25/75, respectively. Mixed cells were centrifuged to form spherical pellets followed by culture in a defined serum free chondrogenic differentiation medium. Control groups were pure Men and pure BMSCs. Total cell number per pellet was 25×104. Pellets were cultured for 3 weeks under normal oxygen tension. Thereafter, pellets were processed: biochemically for GAG and DNA content, and histologically for Safranin-O staining of sulphated GAG and immunohistochemical analyses for collagen types I and II. Analysis was performed on a minimum of 2 independent pellets.